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1. Executive Summary 
 

a. Phase I Program Objectives1 
 
 
1. Demonstrate the feasibility of formulating a nontraditional model of LRE stability 

in terms of well-known thermomechanical system principles, with the potential to 
provide quantitative predictions of combustion stability in an idealized engine 
configuration. 

 
2. Demonstrate that the thermomechanical approach can be used to establish a 

direct correspondence between distributed, transient heat addition and 
mechanical (wave) disturbance growth in a semi-confined geometry. 

 
3. Formulate stability concepts attributable to thermomechanics in a semi-confined 

system. 
 

 
 

During the nine month Phase I contract period (15June2010-14March2011) the research 
program has focused on: 
 

 an evaluation of the flamelet concept application as currently implemented to 
supercritical turbulent flows [1], and  
 

 a quantitative thermomechanical formulation for gas motion and acoustic 
disturbances induced by localized, spatially distributed, transient heat 
addition, including that from exothermic chemical reactions, as a metaphor 
for physical and chemical phenomena occurring in a liquid rocket engine 
(LRE) combustion chamber, 

 
to demonstrate the feasibility of the objectives cited above.   Summaries of the results 
obtained and their technical value to the AFRL are given in b. below, based on the detailed 
technical papers in the Appendices. 
 
   

                                                        
1 From the Phase I proposal to AFOSR (Sept. 2009) 
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b. Phase I Research Accomplishments 
 
b.1-Flamelet concept application to supercritical flows 
 

The focus of this study was on the examination of the subgrid-scale (SGS) scalar 
variance, as related to the potential utilization of flamelet models under supercritical 
conditions.  

 
We first addressed the issue of the SGS scalar variance, σZ, as related to the LES 

modeling of the turbulent reaction through the flamelet model. Although we do not have 
yet a database of reactive turbulent supercritical flows, since the flamelet model relies 
on the definition of a conserved scalar Z, we have the necessary information from our 
previous species-mixing study to perform the investigation; if a conserved scalar can be 
defined for the reactive flow situation, because of the additional coupling due to 
reaction, this scalar is expected to have a more complex behavior than the present one 
resulting only from mixing, so the results of this study are conservative in terms of the 
level of difficulty to model the scalar variance.  

 
In a first step of the study, we derived the σZ equation [1, 2] in two forms. The first 

form highlighted the new terms in the equation with respect to the atmospheric-pressure 
conditions case, and the second form emphasized the new SGS terms in the equation 
that would require modeling, as well as identified the nature of each term (i.e. 
production or dissipation). The result of assessing the activity of all terms in the two 
equations was to identify two new SGS terms that are have comparable magnitude to 
the classical terms and thus cannot be neglected: (i) a SGS diffusion term, and (ii) a 
SGS Soret term that has a dissipative effect. Given the lack of models for these terms, it 
was decided that trying to model them in the σZ equation for the purpose of solving the 
equation was bound to be an unrewarding approach, and instead, it was decided to 
propose direct models for σZ. Examination of the database over several binary-species 
systems revealed that indeed the PDF of Z is best approximated by a β PDF, which 
justified investing time in modeling σZ since the PDF can be constructed from its mean 
provided by the LES solution and a model of σZ. 

 
Thus, in the second step of the study we explored two models for σZ: (1) the 

approximate deconvolution model (ADM), and (2) a dynamic gradient-based (GRD) 
model. These models are conceptually different as ADM relies on a mathematical 
derivation with no assumptions required regarding the nature of the scale interactions, 
while the GRD relies on the mixing-length hypothesis in conjunction with an equilibrium 
assumption. The ADM is generally very good to excellent at relatively small filter widths, 
but as the filter width becomes large, there is evidence that the series expansion on 
which ADM relies does not converge with increasing order of approximation, as an 
overshoot becomes increasingly visible with increasing filter width. Thus, ADM should 
be considered here as an approximation rather than a converging procedure to obtain 
σZ, and in this particular case an approximation order of 3 is recommended. For the 
GRD-based model, we formulated a new model which we exercised and compared to 
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the results obtained with a classical model in conjunction with two approximations for 
the filter width. Compared to the classical model which increasingly departs from the 
filtered DNS template with either type of filter approximation, our model maintains high 
fidelity even at very large filter widths and in a range where test filtering is performed 
close to the production range of wavenumbers. 

 
A manuscript has been submitted for publication [1] and a presentation [2] has been 

made at a national conference of this subject. 
 

b.2-Thermomechanics of reactive gases 
    

Transient, spatially distributed combustion in a turbulent flow is thought to be the 
source of acoustic and stronger mechanical disturbances in a LRE chamber. 
Surprisingly, a quantitative model for mechanical wave generation in a transient, 
spatially distributed reacting flow does not appear to be available in the technical 
literature. As a first step in the development of such a theory, Kassoy [3] describes a 
thermomechanics-based study to identify a quantitative relationship between time 
resolved, localized power deposition into a finite volume of inert gas and the magnitude 
of acoustic or stronger disturbances generated in the neighboring unheated, unconfined 
gas.  The results demonstrate that the thermomechanical response of the heated gas 
depends on a complex relationship between the magnitude of energy deposited and the 
time scale for that deposition, but not simply on the power deposition alone. The theory 
is limited to heating time scales small compared to the acoustic time of the volume, a 
condition necessary for the pressure to rise with temperature (while the density change 
is marginal). When the energy deposition is quantitatively limited, nearly constant 
volume heating occurs (near-inertial confinement), characterized by a small internal gas 
expansion Mach number, defined with respect to the high temperature hot spot speed of 
sound.  Temperature and pressure rise together within the hot spot. Localized high 
pressure, relative to that in the cold neighboring gas, is necessary to create the 
pressure gradient source of induced mechanical motion (both fluid speed and acoustic 
disturbances).  Gas expelled from the boundary of the hot spot (the “piston effect”) is 
the source of mechanical disturbances in the unheated environmental gas.  The 
expelled gas Mach number, measured with respect to the cold gas speed of sound will 
be exceptionally small when the energy deposition is sufficiently small relative to the 
quantitative limitation referred to above.  The resulting mechanical disturbances in the 
cold environment are linear acoustic waves.  Larger energy deposition within the 
quantitative limitation is associated with much larger expelled gas Mach numbers and 
significantly stronger shock wave propagation in the cold environmental gas. Beyond 
the quantitative limitation referred to above, the heating process is fully compressible, 
characterized by a very large internal Mach number.  The asymptotic theory 
demonstrates that this type of thermomechanical response to energy deposition is the 
source of strong blast waves [4] in the unheated external environment.  The formulation 
in Ref. 3 has been generalized during the Phase I program to examine 
thermomechanical effects in a reactive gas with one-step kinetics [5].  The complete 
technical description appears in Appendix  3.b 
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The primary objective of the study in Ref. 5 is to quantify the thermomechanical 
response of a reactive gas affected by a localized exothermic chemical reaction.   
Relative to the objectives of the Phase I program cited above, this type of theory 
provides fundamental insights into the sources of mechanical disturbances within a LRE 
chamber containing a turbulent reacting flow.  Crucial length and time scales, as well as 
dominant physico-chemical processes derived from an asymptotic formulation may be 
employed by numerical modelers to fully resolve transient reactive flow phenomena and 
to produce reliable predictions of combustion stability in realistic LRE configurations. 
 

The theory in Ref. 5 is formulated for a subcritical gas with one-step, high activation 
energy exothermic kinetics. The asymptotic formulation demonstrates that the 
thermomechanical response of a reactive gas to localized, rapid2 chemical heat addition 
is similar in nature to that for an inert gas with external heating [3].  Nearly inertially-
confined heating occurs only when the chemical heat release and the high activation 
energy are quantitatively restricted.  Within that limitation one finds linear acoustic wave 
generation for the smallest range of energy addition and stronger wave generation for 
more significant energy deposition.  
 

Numerical solutions to the equations describing the nearly-inertially confined 
reaction-generated heat addition process show that a spatially distributed reaction wave 
appears spontaneously in the hottest portion of the hot spot, and propagates through 
the relatively slowly moving fluid at a supersonic speed, relative to the hot gas speed of 
sound. As the front nears the much colder boundary of the hot spot it decelerates 
significantly and steepens considerably. The configuration evolves toward a 
discontinuous front separating hot, high-pressure, burned gas on one side from cold, 
low pressure reactant on the other side.  Although the pressure, temperature and 
reactant concentration jumps across the front are reminiscent of a reactive shock wave, 
the front does not propagate at a supersonic speed relative to the unburned cold 
reactant near the boundary of the hot spot.  In fact, during the relevant heating time 
scale the entire process occurs in a nearly incompressible medium.  Fluid expelled from 
the hot spot boundary acts as source of mechanical disturbances propagating into the 
neighboring cold gas.  The amplitude of those disturbances depends upon the energy 
addition level during the reactive phase of the hot spot.  
 

In analogy with the inert gas results, a fully compressible heat addition process 
occurs when the chemical energy addition exceeds the quantitative restriction referred 
to above.  The internal expansion Mach number, defined relative to the hot gas speed of 
sound is substantial and can be supersonic. The hot spot transients must be determined 
from a numerical solution to the compressible, reactive, gasdynamic equations, to be 
completed in the future. 
 

In summary, an asymptotic formulation of the reactive hot spot problem has been 
developed to quantify the thermomechanical response of reactive gas to localized 
energy addition on a time scale short compared to the acoustic time of the finite volume.  

                                                        
2 Heating time-scale short compared to the local acoustic time 
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Explicit results have been obtained for relatively modest levels of energy addition 
compatible with nearly-constant volume heating and linear acoustic wave propagation in 
the gas beyond the hot spot.  The formulation includes a rational derivation of the 
compressible, reactive, gasdynamic equations describing the thermomechanical 
response of a hot spot to larger values of energy addition. This comprehensive 
quantitative analysis substantiates the feasibility of using thermomechanical concepts to 
achieve many of the objectives cited in 1a above. 
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Abstract

To model the Subgrid-Scale (SGS) scalar variance under supercritical-pressure conditions, an

equation is first derived for it. This equation is considerably more complex than its equivalent for

atmospheric-pressure conditions. Using a previously created Direct Numerical Simulation (DNS)

database of transitional states obtained for binary-species systems in the context of temporal mix-

ing layers, the activity of terms in this equation is evaluated and it is found that some of these

new terms have magnitude comparable to that of governing terms in the classical equation. Most

prominent among these new terms are those expressing the variation of diffusivity with thermo-

dynamic variables and a Soret terms having dissipative effects. Since models are not available for

these new terms that would enable solving the SGS scalar variance equation, the adopted strategy

is to directly model the SGS scalar variance. Two models are investigated for this quantity, both

developed in the context of compressible flows. The first one is based on an approximate deconvo-

lution approach and the second one is a gradient-like model which relies on a dynamic procedure

using the Leonard term expansion. Both models are successful in reproducing the SGS scalar

variance extracted from the filtered DNS database, and moreover, when used in the framework of

a Probability Density Function (PDF) approach in conjunction with the β-PDF, they excellently

reproduce a filtered quantity which is a function of the scalar. For the dynamic model, the pro-

portionality coefficient spans a small range of values through the layer cross-stream coordinate,

boding well for the stability of Large Eddy Simulations using this model.
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I. INTRODUCTION

One of the most useful concepts in turbulent combustion is that of a ‘flamelet’ ([1]). Its

usefulness stems from the fact that the flamelet model is applicable in conjunction with finite

rate chemistry and it is the only turbulent combustion model which contains the essential

coupling between classically-computed molecular mass-diffusion and chemical reaction rate.

This model is applicable when the chemical reactions have a relatively short characteristic

time with respect to the flow, so that the flame is thin and turbulent eddies move it and

distort it as an entity rather then penetrating into the flame and affecting there the reaction.

When the flame is not penetrated by turbulence, the interior of the flame is akin to a laminar

flame, and turbulence modeling is only needed for the flow external to the flame; this is a

substantial advantage for modeling of turbulent reactive flows. Finding the evolution of the

flame is then reduced to obtaining its statistical position. For non-premixed combustion,

several assumptions and mathematical manipulations of the governing equations lead to an

equation devoid of chemical sources for a quantity which is thus a conserved scalar. This

quantity is called ‘the mixture fraction’, Z, and the statistics of the stoichiometric value

of Z,Zs, determine the flame location; whereas the temporal solution of the species mass

fraction, Y, and temperature, T, in the Z coordinate system determines the internal flame

structure. In the species and energy equations written in the Z coordinate system, the

scalar dissipation, χ, acts as a diffusion coefficient. This scalar dissipation is that within

the flamelet, and thus is at a scale smaller than the solution of the flow field; it is thus the

Subgrid-Scale (SGS) scalar dissipation. Generally, it is hypothesized that Z assumes the

form of a β Probability Density Function (PDF) ([2, 3]), and thus finding this distribution

reduces to obtaining its mean and variance. Summarizing, in order to utilize the flamelet

model one must have available the mean and variance of Z, and the SGS χ. In the context

of Large Eddy Simulation (LES) in which the filtered governing equations are solved subject

to models included to introduce palliatives for the filtered-out SGS effects, the mean Z

value is known from the LES solution. However, neither the SGS Z variance nor the SGS

dissipation of Z can be found from the LES solution, and thus they must be modeled. For

example, several investigators [4, 5] modeled the SGS scalar variance as proportional to

the resolved (i.e. LES) scalar dissipation, a model which follows from the classical mixing

length assumption considering that the scalar variance is a measure of the level of scalar
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fluctuations.

Given the aforementioned importance of the SGS scalar variance in modeling combustion,

and the numerous studies devoted to solving the SGS scalar variance equation by modeling

those of its terms that are not computable from the LES solution (e.g. [6, 7]), we are here

investigating the modeling of the SGS scalar variance under supercritical pressure conditions

and use a previously created Direct Numerical simulations (DNS) database for examining

the capability of several models. The difference between this situation and the much studied

atmospheric-pressure conditions is that here the species mass fluxes include Soret effects,

that real gas equations of state (EOSs) instead of the perfect gas EOS are used and that the

transport properties are all complex functions of the thermodynamic quantities. In Section

II we derive the SGS scalar variance equation and show that it includes a large number of

subgrid terms the modeling of which is uncertain. Considering this uncertainty, we next

examine in Section III the conserved scalar extracted from the DNS database and explore

whether it can be represented in LES by a presumed PDF for which the SGS scalar variance

would be needed. Further, in Section IV, we assess the ability of two models to accurately

portray the SGS scalar variance. The databases are summarized in Section V. Model

assessments are here performed on these databases representing transitional states obtained

from simulating mixing of two chemical species under supercritical pressure. The database

consists of three sets of species and was created in the context of a temporal mixing layer.

The mixing situation has been here selected rather than a chemically reacting case because

the former represents a conservative choice in that the scalar could have a considerably more

complex distribution in a reactive flow due to coupling among thermodynamic variables

that would introduce increased flow structure, so that if a model is not accurate for the

mixing situation, it will certainly be even less accurate for a reactive flow. On the other

hand, an acceptable model describing the conserved scalar only during mixing may not be

acceptable for reactive flows but it represents the departing point for constructing such a

model. Additionally, one commonality among the evolution of the flow for all layers was the

formation of High Density-Gradient Magnitude (HDGM) regions populating the entire flow,

which originate from the combination of the distortion of the original boundary separating

the two fluids and the mixing of species having disparate molar masses. These HDGM

regions are the sites where mixing between species occurs. Thus, the conserved scalar,

which is any of the two species in a layer, displays high non-uniformities and the HDGM
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regions resemble in geometry the flamelets much studied in reactive flows; this resemblance

adds relevance to the databases utilized in this study. Results are presented in Section VI.

A summary and conclusions are offered in Section VII.

II. THE SGS SCALAR VARIANCE TRANSPORT EQUATION

Considering Z to be one of the species, the SGS scalar variance is

σZ =
©
Z2
ª
− {Z}2 (1)

where the operator {∗} denotes Favre-filtered quantities (we depart in this Section from
the typical eZ notation given the complex expressions in the SGS scalar variance equation

below), i.e.

{Z} = ρZ

ρ
(2)

where ρ is the mixture density and for any function g(x) the filtered value is expressed in

physical space by

g(x) =

Z
Ω

g(x0)G(x− x0)dx0 (3)

where G is the filter function associated with the characteristic filter size ∆ and Ω is the

entire spatial domain. According to the scalar equation under supercritical conditions [8—12],
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the transport equation of the SGS scalar variance is

ρ
DσZ
Dt

= ∇ · [ρ {DαD}∇σZ ]| {z }
term 1

+ 2ρ {DαD}∇ {Z} ·∇ {Z}| {z }
term 2

− 2ρ [{DαD} {∇Z ·∇Z}]| {z }
term 3

−∇ · (ρω)| {z }
term 4

+ 2 {Z}∇ · (ρη)| {z }
term 5

− 2ρ [{DαD∇Z ·∇Z}− {DαD} {∇Z ·∇Z}]| {z }
term 6

+ 2∇ · [ρ {DαDZ ∇Z}− ρ {DαD} {Z ∇Z}]| {z }
term 7

− 2 {Z}∇ · [ρ {DαD∇Z}− ρ {DαD} {∇Z}]| {z }
term 8

+ 2∇ ·
∙
ρ

½
αBK(1− Z)Z2

D

T
∇T

¾¸
| {z }

term 9

− 2ρ
½
αBK(1− Z)Z

D

T
∇T ·∇Z

¾
| {z }

term 10

+ 2∇ ·
∙
ρ

½
D
(1− Z)Z2

RuT

m1m2

m
Λ ∇p

¾¸
| {z }

term 11

− 2ρ
½
D
(1− Z)Z

RuT

m1m2

m
Λ∇p ·∇Z

¾
| {z }

term 12

− 2 {Z}∇ ·
∙
ρ

½
αBK(1− Z)Z

D

T
∇T

¾¸
| {z }

term 13

− 2 {Z}∇ ·
∙
ρ

½
D
(1− Z)Z

RuT

m1m2

m
Λ ∇p

¾¸
| {z }

term 14

(4)

where DσZ
Dt

= ∂σZ
∂t
+ {u} ·∇σZ is the material derivative, t is time, u denotes the velocity,

p is the pressure, T is the temperature, Ru is the universal gas constant, D and αD are

the variable diffusion coefficient and mass diffusion factor respectively, αBK is the Bearman-

Kirkwood form of the thermal diffusion factor and Λ is defined as

Λ =

µ
1

m2

∂(m/ρ)

∂X2
− 1

m1

∂(m/ρ)

∂X1

¶
, (5)

with m denoting the molar mass and X labeling the molar fraction (for both m and X,

subscript 2 refers to Z and subscript 1 refers to the complement of Z in the mixture,

(1− Z)). Vectors ω and η are the SGS fluxes

ω =
©
Z2u

ª
−
©
Z2
ª
{u} , (6)

5



η = {Zu}− {Z} {u} . (7)

Equation (4) clearly differs from the classical SGS-scalar-variance transport equation

under atmospheric conditions (e.g. Jiménez et al. [6]). On the right hand side (r.h.s.)

of Eq. (4), one recognizes familiar terms such as the molecular diffusion (term 1), the

Fick-issued resolved and filtered scalar dissipation rate (terms 2 and 3, respectively), the

transport of the square of the scalar and of the scalar by the SGS turbulence (terms 4 and 5,

respectively); however, new terms appear as a consequence of the spatial variation of DαD

under supercritical conditions and also because of filtering the nonlinear pressure-gradient

and Soret terms. We distinguish here between the total dissipation, which is the irreversible

entropy production [13]

χ ∝ Jα · Jα, (8)

and which is the sum of six terms (since the species mass-diffusion flux, Jα, is the sum of

three terms [8, 9, 13]), and the Fick-issued dissipation which represents only one of these

six terms.

Whereas the form of Eq. (4) highlights the new terms due to the supercritical-pressure as-

pect, another form of the SGS scalar variance equation can highlight new SGS contributions
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to the SGS scalar variance; this latter form is similar to that of Pera et al. [7]:

ρ
DσZ
Dt

= ∇ · [ρ {DαD}∇σZ ]| {z }
Resolved Molecular Diffusion

−∇ · [ρ (ω − 2 {Z} η)]| {z }
SGS Turbulent Fluxes

− 2ρ {DαD} [{∇Z ·∇Z}−∇ {Z} ·∇ {Z}]| {z }
Fick-issued SGS Dissipation

− 2ρη ·∇ {Z}| {z }
SGS Production

+ 2∇ · [ρ {DαDZ∇Z}− ρ {DαD} {Z∇Z}]| {z }
SGS Diffusivity 1

− 2∇ · [ρ {Z} ({DαD∇Z}− {DαD}∇ {Z})]| {z }
SGS Diffusivity 2

+ 2 [ρ {DαD∇Z}− ρ {DαD}∇ {Z}] ·∇ {Z}| {z }
SGS Diffusivity 3

− 2ρ [{DαD∇Z ·∇Z}− {DαD} {∇Z ·∇Z}]| {z }
SGS Diffusivity 4

+ 2∇ ·
∙
ρ

µ½
αBK(1− Z)Z2

D

T
∇T

¾
−
½
αBK(1− Z)Z

D

T
∇T

¾
{Z}

¶¸
| {z }

SGS Soret 1

− 2ρ
∙½

αBK(1− Z)Z
D

T
∇T ·∇Z

¾
−
½
αBK(1− Z)Z

D

T
∇T

¾
·∇ {Z}

¸
| {z }

SGS Soret 2

+ 2∇ ·
∙
ρ

µ½
D
(1− Z)Z2

RuT

m1m2

m
Λ∇p

¾
−
½
D
(1− Z)Z

RuT

m1m2

m
Λ∇p

¾
{Z}

¶¸
| {z }

SGS Pressure 1

− 2ρ
∙½

D
(1− Z)Z

RuT

m1m2

m
Λ∇p ·∇Z

¾
−
½
D
(1− Z)Z

RuT

m1m2

m
Λ∇p

¾
·∇ {Z}

¸
| {z }

SGS Pressure 2

(9)

where term 5 in Eq. (4) was split into the classical turbulent-flux form and SGS production,

the turbulent fluxes were combined and only SGS-type terms emphasized. The meaning of

the new SGS terms is not obvious and must be investigated.

It will be shown in Section VIA that the additional SGS terms in Eq. (4) have significant

activity, and thus are important to model. Moreover, the root mean square (r.m.s.) activity

and the mean values of the SGS terms in Eq. (9) will be examined to understand their

influence on the SGS variance evolution. Models for the new SGS terms in either Eq. (4)

or Eq. (9) are not currently available, a fact which motivated investigating whether the

conserved scalar conforms to a PDF having a known mathematical expression. If this is the

case, the PDF could be used in a presumed-PDF approach and therefore the SGS scalar

7



variance could be useful for constructing the PDF, a fact which would motivate finding a

model for it. The investigation of the SGS PDF shape is described next. In the remaining

part of this study, we revert to the usual notation, eZ, for the Favre filtered quantities.
III. THE PDF OF THE CONSERVED SCALAR

The scalar statistics is the important information desired for flamelet modeling (e.g.

[14]). However, if the PDF is complex, it has the drawback that it can only be approximately

reconstructed by a large number of its moments [15]. It is certainly computationally easier if

it can be shown that the PDF of the scalar conforms to a PDF having a simple mathematical

form for which only a small number of moments is necessary for its reconstruction. Such

simple PDFs are, for example, the Dirac, the Gaussian and the β functions for which one

needs a maximum number of two moments for reconstruction. As stated above, the first

moment of the local (SGS) PDF, is always computable from LES, so that the focus is on

computing the second moment, i.e. the SGS scalar variance. An extensive literature exists on

the topic of the SGS scalar variance computation [2, 4, 5, 7, 16, 17] but not for supercritical

turbulent flows for which, as seen in Section II, the variance equation is considerably more

complex than in the already studied flows, indicating possible departures from previous

findings, as implied by previous results [8]. To inquire about the form of the SGS PDF,

we recall here its definition and discuss a practical way to calculate it under compressible

conditions.

The instantaneous SGS PDF (fsgs) of a scalar quantity Z may be defined using the fine-

grained density γ[ξ, Z(x)] ≡ δ[Z(x)− ξ], by weighting it with the filter function G [18, 19]

as

fsgs(ξ;x) =

Z
Ω

δ[Z(x0)− ξ]G(x− x0)dx0 (10)

where δ is the Dirac delta function and ξ is the scalar-space variable representing Z. If G is a

positive filter kernel, fsgs has the property of a PDF. As every PDF, it is constrained by the

normalization condition stating that the integral over the scalar space is unity. For Z ∈[0,1],
the instantaneous filtered value of any quantity g (Z(x))may be obtained by integration over

the scalar space as [17]

g(x) =

Z 1

0

g(ξ)fsgs(ξ;x)dξ. (11)
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In the same spirit, for obtaining the Favre-filtered value of every quantity g (Z(x)) by using

a PDF, a mass-weighted SGS PDF must be defined [20]

fsgsc(ξ;x) =
1

ρ(x)

Z
Ω

ρ(x0)δ[Z(x0)− ξ]G(x− x0)dx0 (12)

where the subscript c denotes the compressible situation, and then

eg(x) = Z 1

0

g(ξ)fsgsc(ξ;x)dξ. (13)

The mass-weighted SGS PDF (referred to as Filtered Mass Density Function (FMDF))

is defined by Jaberi et al. [21] and Raman et al. [22] in a probabilistic manner using the

property that the integral of fsgsc over the sample space gives the filtered density value. This

definition is then used in the framework of a PDF approach where a transport equation for

the PDF is solved. Here, instead, a PDF normalized by ρ(x), i.e. Eq. (12), is needed as we

wish to satisfy the classical definition of the PDF integrating to unity. The SGS PDF, as

defined by Eqs. (10) and (12), is not a statistical quantity as it is a one-point distribution

conditioned to a given flow realization. Following Jiménez et al. [3], Fox [23] and Pitsch [24],

an appropriate SGS PDF utilizable for modeling purposes should instead be understood as

a statistical quantity arising from a statistical sample of equivalent grid elements. Since in

the a priori analysis using the DNS database the exact statistical quantity is not available,

we will instead use, as an approximation of the statistical SGS PDF for evaluating the

accuracy of models, statistics computed employing the one-point SGS PDF defined above.

The expectation of this PDF over homogeneous directions and the conditional (on moments)

expectation are used to assess presumed PDF shapes against the DNS-extracted ones, as

described below.

Assuming the filter width to be smaller than the variation scale of mean quantities and

that filtering and averaging operators commute, a Favre mean (i.e. expectation) of the

filtered local value may be obtained

< eg(x) >c=

Z 1

0

g(ξ) < fsgsc(ξ;x) >c dξ (14)

where the operator < · >c denotes planar averages weighted by the filtered density. The

quantity < fsgsc >c is equivalent to a filtered PDF of the scalar as defined by Jiménez et

al. [3] for incompressible flows and it is given by the mass-weighted PDF of the scalar over

planes of height equal to the filter width (coarsened-grid planes). The filtered PDF may be

9



computed as

< fsgsc(ξ; eξ, σξ) >c=

Z
fc(eξ, σξ)fsgsc(ξ; eξ, σξ)deξdσξ (15)

by using the mass-weighted joint-moment PDF fc in conjunction with the PDF fsgsc, defined

as a function of couples of moments (eξ, σξ) instead than x where σξ is the moment-space
variable representing σZ, and integrating over the LES-moment space (eξ, σξ). The defini-
tion of Eq. (15) may be computationally practical since any assumed PDF model may be

evaluated by replacing in Eq. (15) the presumed PDF, fsgsc(ξ; eξ, σξ), computed from any

couple of mapped values (eξ, σξ), and fc(eξ, σξ) as obtained from the filtered DNS database

over homogeneous (coarsened-grid) directions. The fsgsc expectation, < fsgsc >c, is used to

evaluate the presumed-PDF shapes against the DNS-extracted ones.

To approximate the statistical SGS PDF, we also consider as an alternate to the above

method, the optimal estimator method of Moreau et al. [25] which uses the conditional ex-

pectation. The latter is obtained by averaging the PDF fsgsc(ξ; eξ, σξ), over a sample of PDFs
having the same couples of exact moments (eξ, σξ). Practically, the computation is performed
by averaging over SGS volumes having couple of moments (eξ, σξ) very close to a selected one,
according with a fixed standard deviation chosen such as to have accurate statistics. The

conditional expectation of the DNS-extracted quantity fsgsc(ξ; eξ, σξ) is then compared to the
assumed PDFs computed using the exact moments. Here, the Favre-conditional expecta-

tion is obtained by mass-weighted averaging using the filtered local density, and statistics

are computed over a slab of the mixing layer in order to increase the sample size.

In this study, three local PDFs will be assessed: the β PDF, the Gaussian and the Dirac

ones. These PDFs are here briefly recalled:

• The β PDF:

fsgsc

³
ξ;α(eξ, σξ), β(eξ, σξ)´ = Γ(α+ β)

Γ(α)Γ(β)
ξα−1(1− ξ)β−1 (16)

where Γ is the Gamma function and parameters α and β are defined by

α = eξÃeξ(1− eξ)
σξ

− 1
!
, β = (1− eξ)Ãeξ(1− eξ)

σξ
− 1
!
. (17)

• The Gaussian PDF:

fsgsc(ξ; eξ, σξ) = 1√
2πσξ

e
− (ξ−ξ)2

2σξ

1
2

µ
1 + erf b−ξ√

2σξ

¶
− 1

2

µ
1 + erf a−ξ√

2σξ

¶ , (18)
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As the scalar ξ is bounded between 0 and 1, the Gaussian distribution is truncated and

the resulting PDF is thus re-normalized using the difference between the cumulative

distribution functions evaluated at b = 1 and a = 0. This computed distribution has

no longer the same mean and variance as the original distribution. As an alternate, a

clipped Gaussian is also considered [26].

• The Dirac PDF:

fsgsc(ξ; eξ) = δ(ξ − eξ). (19)

The Dirac PDF is utilized when the scalar ξ is only modeled through its mean, eξ.
In Section VIB we present results from computations with these PDFs using both meth-

ods to approximate the statistical SGS PDF, and particularly we show that whereas the

Dirac and Gaussian PDF are generally deficient, the β-PDF typically yields a good ap-

proximation, a fact which provided the incentive to directly model the scalar variance, as

described in the following.

IV. DIRECT MODELING OF THE SGS SCALAR VARIANCE

Two types of models appear to be promising candidates for modeling small-scale effects

removed through filtering. The first model is of a structural type [27] based on the Ap-

proximate Deconvolution Model (ADM) [28] while the second one is of a functional type

using a gradient-based scaling law [4]. The two models are conceptually different as the first

one arises from a mathematical derivation with no assumption regarding the nature of scale

interactions, while the second one uses a mixing-length hypothesis in conjunction with an

equilibrium assumption. The original contribution of our work is the investigation of the

ADM capability for computing σZ in variable density flows, and the extension of a recent

dynamic gradient-based formulation [5] to compressible conditions for modeling σZ.
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A. The approximate deconvolution model

The deconvolution procedure [28] relies on the assumption that there exists an inverse

operator G−1 =
P∞

l=0(I −G)l such as

Z∗ =

"
NX
l=0

(I −G)l

#
∗ Z (20)

where I is the identity operator and Z∗ represents an approximation of the original field Z,

on the LES mesh grid, at the series truncation order N . The series is known to converge for

kI −Gk < 1, and written using de van Cittert method [29] based on the Neumann series

leads to

Z∗ = Z +
³
Z − Z

´
+

µ
Z − 2Z + Z

¶
+ ..... (21)

where the accuracy of Z∗ depends on N . In practice, due to the numerical discretization

(projection on a coarse mesh grid), only the recoverable part of the original field Z may be

obtained by a deconvolution procedure [30]. Furthermore, the deconvolution relies on the

form of the convolution-filter kernel and on the shape of the spectrum of the field [17].

The series’ rate of convergence is situation dependent. For example, it has been found

[31] that N = 3 is sufficient to bring an improvement in that for a quantity φ, (φ∗−φ) is not
null showing that the expansion is indeed effective, and for N ≥ 5 the value of (φ∗ − φ) did

not change appreciably from that obtained with N < 5. In other studies specifically directed

at Z, it was found that the series converges very slowly. Pantano and Sarkar [16] tested

the deconvolution procedure in an a priori analysis using the DNS of a temporal mixing

layer; they showed that even with N = 5 (i.e. fourth-order approximation) and a small

filter size (∆/∆xDNS = 4, where ∆xDNS is the grid spacing for a simulation where all scales

relevant to most of the dissipation are resolved, as in DNS), no more than 88% of the total

SGS-scalar-variance amount (in the peak zone) was recovered. The rate of convergence of

the series and the recoverable amount of the field are thus the main issues of the method.

In order to recover all effects of the smallest scales, Stolz et al. [28] suggested a secondary

filtering through the use of a relaxation parameter in the Navier-Stokes (NS) equations. To

mitigate both these issues, Pantano and Sarkar [16] and Mellado et al. [17] proposed an

approximate reconstruction using moments (ARM) method which, based on the definition

of an intermediate field, leads to computing the SGS scalar variance by imposing equality

between the real moment and that of the intermediate field. This procedure results in an

12



expression for a parameter c0, characterizing the model, that is obtained by finding the real

and positive solution of a second-order polynomial equation. The polynomial coefficients

a0, a1, a2 are computed using the presumed shape of the spectrum of the scalar quantity.

Once the shape of the spectrum is selected, c0 may be precomputed and stored in a two-

dimensional table of coordinates represented by two dimensionless quantities: the Péclet

number, and the ratio between the filter width and a large scale of the scalar fluctuations.

That approach was developed for incompressible flows. Under compressible conditions, that

model requires rewriting for the conservative quantities for which the governing equations

are solved in LES of compressible flows; but then, equality between moments would not

lead to an explicit expression for the SGS scalar variance unless additional assumptions are

invoked. Moreover, when in presence of variable density, the shape of the spectrum cannot

be built using calibrated constants computed either by using the Reynolds-averaged scalar

variance or by employing the Favre-averaged one. This is why, considering the practical

utilization in LES, we opt to explore a classical deconvolution procedure.

Since in LES it is the conservative rather than primitive quantities which are calculated,

we are legitimately inquiring as to whether the SGS scalar variance could be accurately

reconstructed employing a deconvolution procedure for these quantities. Indeed, for recon-

structing the approximated scalar field and building the SGS (Favre) scalar variance, we

must reconstruct ρ and Z through

ρ∗ = ρ+
¡
ρ− ρ

¢
+
³
ρ− 2ρ+ ρ

´
+ ..... (22)

(ρZ)∗ = ρZ +
³
ρZ − ρZ

´
+

µ
ρZ − 2ρZ + ρZ

¶
+ ..... (23)

which then permits writing

Z∗∗ = (ρZ)∗ /ρ∗. (24)

invoking the assumption

Z∗∗ ' Z∗. (25)

Equation (25) implies equality between second-order moments of Z∗∗ and Z∗. The non-

linear function of the approximate field, the Favre SGS scalar variance, is then built, for

consistency [16], by using of deconvoluted fields as

σZ =
ρ∗Z∗∗Z∗∗

ρ∗
− ρ∗Z∗∗

ρ∗
ρ∗Z∗∗

ρ∗
. (26)
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The assumption of Eq. (25) is exact if both ρ and ρZ fields are totally recovered and an

infinite expansion is used. Otherwise, there is no proof that ratio between series (23) and

(22) converges to the recoverable part of the quantity Z, which is Z∗ at a given truncation

order N . Such an assumption, although not trivial, has already been used by Stolz et al.

[32] while reconstructing flux terms of the compressible NS equations, and by Dubois et al.

[33] in the first of a two-step procedure for estimating the SGS stress tensor. The difference

between the previous studies and our investigation is that ADM is here used in the context of

a soft-deconvolution problem ([27]) in which no additional models for recovering the deficient

SGS part are provided. In Section VIC1 we evaluate the assumption of Eq. (25) and the

equality between moments of Z∗∗ and Z∗ for several truncation orders. We also assess the

ADM model using the series Eqs. (22) and (23), with, consistently, both series truncated at

same order.

B. The dynamic model

A Smagorinsky-type model for predicting the SGS scalar variance of compressible flows

was proposed by Pierce and Moin [4] using a dynamic procedure [34]. This model was

similar to that of Moin et al. [35] for modeling the SGS stress tensor and heat flux under

compressible conditions. The model of Pierce andMoin [4] has been extensively used over the

years [7, 20, 36, 37] as an alternate to the scale-similarity model suggested by Cook and Riley

[2] based on the idea of Bardina et al. [38]. The scale-similarity model has been explored in

several different configurations [3, 7, 39, 40]. Recently, Balarac et al. [5], using the optimal

estimator concept of Moreau et al. [25], showed that the irreducible error associated with

a Smagorinsky-type model is relatively small if compared to that evaluated for a scale-

similarity model, meaning that the functional form of a gradient-based model has significant

potential in LES for reproducing the SGS scalar variance. This has also been observed by

Wall et al. [36] when studying the performance of the two models used in that study in

conjunction with a presumed PDF approach. On the other hand, Balarac et al. [5] showed

that the quadratic error associated with the gradient-based model notably increases with

filter width when a classical dynamic procedure is used for computing the model coefficient.

In the present study, the Balarac et al. [5] model, which is for incompressible flow, is

reformulated under compressible conditions and evaluated for compressible supercritical
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turbulent mixing layers in Section VIC2.

For completeness, the Pierce and Moin [4] dynamic model is briefly recalled and for

consistency we use their notation, where b() is the unweighted test filter at test-filter level bG
corresponding to the filter width b∆ and

ĕZ = c
ρ eZ/bρ. (27)

In the classical dynamic model [4], first the variance is related to the gradient of the resolved

scalar field as

ρσZ = ρ(gZZ − eZ eZ) = Cd∆
2
ρ
¯̄̄
∇ eZ ¯̄̄2 (28)

which, when filtered, yields the following expression

[
ρgZZ −[ρ eZ eZ = C 0

d∆
2

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶. (29)

A similar model is then proposed at the filter level corresponding to the double convolution

of G and bG, i.e. bG = G ∗ bG, associated to the filter width b∆ :

[
ρgZZ − bρ ĕZ ĕZ = C 00

d
b∆2bρ ¯̄̄∇ ĕZ ¯̄̄2 . (30)

Finally, subtracting Eq. (29) from Eq. (30) and assuming C 0
d = C 00

d = Cd (implying either

that the flow variation is such that filtering with the grid or test filter produces analogous

fields or that the coefficients have a slow variation) yields

[
ρ eZ eZ − bρ ĕZ ĕZ = Cd

"b∆2bρ ¯̄̄∇ ĕZ ¯̄̄2 −∆
2

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶# (31)

which may be generically written as

L = CdM (32)

where L ≡
µ
[
ρ eZ eZ − bρ ĕZ ĕZ¶ is the generalized Leonard term andM is defined as

M = b∆2bρ ¯̄̄∇ ĕZ ¯̄̄2 −∆
2

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶. (33)

Since both L andM are computable from the LES solution, Cd may be dynamically com-

puted over homogeneous directions either as the ratio between averagedL andM, or through

the least-square averaging (Lilly [41]) which optimizes the local value by minimizing the
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quadratic error. This dynamic procedure uses a compressible version of the Germano iden-

tity [42], originally written for the SGS stress tensor [35, 43]

Lij = bρTij −dρτij, (34)

which adapted to the scalar variance may be written as

L = bρΣZ −dρσZ (35)

where bρΣZ ≡
µ
[
ρgZZ − bρ ĕZ ĕZ¶ . (36)

Equation (30) was questioned by Balarac et al. [5] who emphasized that a generic fil-

tered quantity bf is not directly obtained through a single convolution, but rather from two

sequential filterings. Using the Bedford and Yeo [44] expansion (which provides a power

series for the non-linear filtered generic term fg as a function of the resolved quantities f

and g), applied twice to the filtered quantities, Balarac et al. [5] pointed out a missing

leading-order term in Eq. (30) and provided an alternative model forM that involves the

use of the Leonard term expansion. The same reasoning is possible for compressible flows

using an appropriate Taylor expansion. Such an approximate expansion was suggested by

Vreman [43] for modeling the SGS stress tensor and is adapted here for isotropic filter to

the scalar variance as

ρσZ = ρZZ − ρZ ρZ/ρ (37)

=ρZZ +
∆
2

24
O2 (ρZZ)−(ρZ + ∆

2

24
O2 (ρZ))(ρZ + ∆

2

24
O2 (ρZ))/(ρ+ ∆

2

24
O2ρ) +O(∆

4
)

=
∆
2

12
ρ |∇Z|2 +O(∆

4
)

where the approximationÃ
ρ+

∆
2

24
O2ρ

!−1
=
1

ρ
− ∆

2

24ρ2
O2ρ+O(∆

4
) (38)

has been made to obtain the final result. A similar expansion

ρ = ρ+O(∆
2
), Z = eZ+O(∆2

) (39)

used in Eq. (37) leads to

ρgZZ = ρ eZ eZ + ∆
2

12
ρ
¯̄̄
∇ eZ ¯̄̄2 +O(∆

4
). (40)
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Equation (40) is conceptually similar to that used by Balarac et al. [5] for incompressible

conditions and in the same way it may be used for obtaining bρΣZ , i.e. the left hand side

(l.h.s.) term of Eq. (30). First, the test filter bG, is applied to Eq. (40)
[
ρgZZ =[ρ eZ eZ + ∆

2

12

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶+O(∆

4
), (41)

then the first term on the r.h.s. is expanded at the filter level bG based on ρ and eZ using the
approximate expansion of Eqs. (37)-(39) applied to these variables, leading to:

[
ρgZZ = bρ ĕZ ĕZ + b∆2

12
bρ ¯̄̄∇ ĕZ ¯̄̄2 + ∆

2

12

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶+O(b∆4,∆

4
). (42)

The above equation, reformulated using a constant to account for the truncation error, leads

to
[
ρgZZ − bρ ĕZ ĕZ = C 000

d

"b∆2bρ ¯̄̄∇ ĕZ ¯̄̄2 +∆
2

\µ
ρ
¯̄̄
∇ eZ ¯̄̄2¶# (43)

which represents another form for the l.h.s. term in Eq. (30). Subtracting Eq. (29) from

Eq. (43) and assuming C 0
d = C 000

d = Cd (under the same implications as when adopting

C 0
d = C 00

d = Cd) leads to a new formulation ofM,Mn

Mn = b∆2bρ ¯̄̄∇ ĕZ ¯̄̄2 (44)

representing the leading order of the Leonard term expansion when Cd palliates for the

truncated terms in the Taylor series expansion. Balarac et al. [5] pointed out that Eq. (42)

contains a new leading order term with respect to Eq. (30) which, when taken into account,

yields the new formulation of M, Mn. Although we obtain the same result as Balarac

et al. [5], Mn for compressible conditions, Eq. (30) is different from the corresponding

equation of Balarac et al. [5] as far as filter width used. Balarac et al. [5] did not discuss

the disparity between the filter width used in the classical formulation and the filter width

needed in the Leonard term expansion, and it appears that the same filter width was used.

However, when the correct filter width is used, the issue of the new leading order term in

the formulation of Eq. (30) is moot, and the result is that only an alternative formulation

for bρΣZ is derived. According to Eq. (44), it is clear that the new formulation uses b∆. For
the classical formulation, according to Eq. (33), the filter is though b∆. This finding is in

agreement with the study of Brun and Friedrich [45]. Using the Vreman et al. [46] estimate,

the filter width associated with the filter level bG isb∆2

= b∆2 +∆
2
, (45)
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representing an approximation for double top-hat filtering. In order to explore the impact

of the filter width used in the classical formulation, and thus to asses the correctness of the

results, we present in Section VIC2 an a priori analysis using the classical formulation in

conjunction with each of the approximations for the filter width b∆ at the filter level bG: i)b∆2

= b∆2 + ∆
2
(correct approximation) and ii) b∆ = b∆ (incorrect with a top-hat filter),

and compare the results from these two computations with those from the new formulation

based on the Leonard term expansion for which the filter is demonstrated to be b∆.
We can thus evaluate the gradient-based model for σZ using two different formulations.

The first formulation is the classical one employing

Cd =
hLMi
hMMi (46)

where hi denote averages over homogeneous planes. The second formulation, which we call
the “new model”, is the present one, and uses

Cd =
hLMni
hMnMni

. (47)

Since the evaluation of the correct filter width at filter-level bG represents the main issue for

computing Cd using a dynamic procedure, the model based on the Leonard term expansion

represents a solution to this quandary, as shown in Section VIC2.

V. DESCRIPTION OF THE DNS DATABASE

A complete and detailed description of the DNS database has already been provided in

[8—12]. Out of the complete database consisting of three sets of species heptane/nitrogen

(HN), oxygen/hydrogen (OH) and oxygen/helium (OHe) for which several simulations were

conducted, we select here three simulations, HN600, OH750 and OHe600 for examination

so as to enhance the generality of the results. The DNS were conducted for a temporal

mixing layer and initiated with (vorticity-thickness based) Reynolds number of 600 (HN600,

OHe600) and 750 (OH750) where δω,0 = ∆U0/ h∂u1/∂x2i is the initial vorticity thickness,
hi is here performed over (x1, x3) planes and ∆U0 is the initial velocity difference across the

layer. In all cases, the DNS grid, ∆xDNS, was fine enough to resolve the scales overwhelm-

ingly responsible for the dissipation. Transitional states were achieved for all of these layers

at t∗tr = 135 for HN600, t
∗
tr = 150 for OH750, t

∗
tr = 220 for OHe600, where t

∗ ≡ t∆U0/δω,0;
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the corresponding transitional Reynolds numbers were 1452, 1507 and 2004. Selle et al. [9]

showed that this database is relevant for fully-turbulent flow modeling.

VI. RESULTS

In all computations, the results of which are presented below, we use a top-hat filter and

a trapezoidal integration method.

A. Activity of terms in the scalar variance equation

All terms in Eqs. (4) and (9) were a priori evaluated using the three DNS realizations

discussed above. The goal of this evaluation is: i) to assess the magnitude of the filtered

terms with respect to that of the resolved terms for modeling purposes (Eq. 4) and ii) to

assess the magnitude of the SGS terms with respect to that of the resolved terms in order

to identify which SGS quantities are important to model (Eq. 9). A cubic top-hat filter and

several filter widths, ∆, were used in the evaluation but only the analysis corresponding to

the ratio ∆/∆xDNS = 8 is here presented, being representative of all ratio values.

Depicted in the Figure (1) is the activity of terms in Eq. (4) as measured by the r.m.s.

magnitude of each term. The results indicate that terms 4 and 5, which involve the classical

subgrid fluxes, dominate showing that our transitional databases have indeed the turbulent

characteristics that make them relevant to this study. The importance of the advective term

increases with the strength of the HDGM at transition [11] (compare OH750 with HN600)

and with increasing Reynolds number value at transition [9] (compare HN600 and OHe600).

The diffusion term (term 1) is of same order of magnitude as the advection term only for

OH750 because the hydrogen diffusivity is very large. Terms 2 and 3 are somewhat smaller

than the advection term for HN600 and OHe600, but significantly larger for OH750. For

both HN600 and OHe600, and less so for OH750, term 3 is larger than term 2, which is a

manifestation of the SGS magnitude associated with the Fick-issued dissipation. Term 6,

representing SGS effects, could be neglected in all cases. Evaluation of term 7, expressing the

diffusivity spatial variation, shows that it is of the same order of magnitude as the resolved

diffusion (term 1) for HN600 and OHe600 simulations, and even larger for the OH750. Thus,

term 7 is non negligible in Eq. (4) under all circumstances. Similarly, term 8 representing
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the effect of spatially varying diffusivity is comparable to term 1 for all cases and should be

included when modeling Eq. (4), particularly when diffusion plays an important role during

mixing (i.e. OH750). In contrast, the terms arising from filtering of the Soret contribution,

i.e. terms 9, 10 and 13 are only substantial for the HN600 case, while those stemming from

filtering of the term proportional to the pressure gradient, namely terms 11 and 14, only

play a minor role in the OH750 and OHe600 layers and are unimportant for the HN600 case.

Term 12 is found negligible everywhere.

Figure (2) shows the results from the a priori assessment of the terms in Eq. (9). Both

the planar average and the r.m.s. activity are computed in order to evaluate not only the

importance but also the nature (i.e. diffusive, dissipative, etc.) of each term. Considering

the planar averages, in all cases, the magnitude of the diffusion terms is comparable to that

of the advection term, and the production term is comparable in magnitude to the Fick-

issued SGS dissipation term. Due to the difficulty of entraining the lower-stream heavy fluid,

the mixing layer growth is moderate which explains the small value of the advection term

compared to that of the SGS production and SGS Fick-issued dissipation. Additionally, for

the HN600 layer the term denoted by SGS Soret 2 has considerable negative magnitude,

adding to the Fick-issued dissipation. This observation is consistent with the definition of

the total scalar dissipation [13]

χT =
1

ρDαD
Jα · Jα (48)

that is here contrasted to the Fick-issued dissipation

χF = ρDαD∇Z·∇Z, (49)

which is only one of the six terms of Eq. (48). Obviously, the Soret contribution plays

an important role for the HN600 layer in the destruction of the scalar fluctuations at the

smallest scales, but clearly its importance is binary-species dependent as it has no impact

on the mixing of the oxygen with hydrogen or helium. In order to understand the behavior

of χF with respect to χT , we illustrate in Fig. (3) the average of χT conditioned on χF

in two planes of the HN600 mixing layer (x2/δω,0 = 0.44 which is in the central part of

the layer and x2/δω,0 = 5.11 which away from the center but still in a significant mixing

region). The results indicate that χT is larger than χF , particularly at the periphery of the

layer. Noteworthy, the linear dependency between χT and χF in Fig. (3) justifies the use of

the scaling law based on the eZ gradient for modeling the SGS scalar variance (see Section
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VIC2) since the behavior of χT and χF is similar.

Considering the r.m.s. activity, in concert with the findings from analysis of Eq. (4),

the effect of the DαD variation at small scales cannot be underestimated. For HN600 and

OHe600 the SGS turbulent fluxes are larger in magnitude than the molecular diffusion flux,

meaning that the scalar fluctuations contribute to the mixing at the SGS scales. Among the

four SGS diffusivity terms, the second one assumes large values when compared to the other

diffusion-like terms or advection term, indicating that it must be retained and modeled in

the SGS scalar variance equation; the third and fourth SGS diffusivity terms have smaller

magnitudes and their nature is dissipative; finally, the first one compares in magnitude to

the resolved diffusion in HN600 and OHe600 but is much larger than the resolved diffusion

for OH750. The conclusion is that particular attention should be devoted to SGS Diffusivity

1 and SGS Diffusivity 2 terms because they have a dominant contribution to the mixing of

oxygen with hydrogen at the SGS scales. The Soret contribution, labeled SGS Soret 1, has

a diffusion-like behavior and is non negligible only in the HN600 mixing layer. Also, the

SGS contributions stemming from filtering of the pressure-gradient terms are negligible in

all cases.

B. Assessment of the presumed-PDF approach for computing filtered non-linear

scalar-dependent quantities

An a priori evaluation of the statistical SGS PDF for the HN600 layer is illustrated in

Fig. (4) for the same two (x1, x3) homogeneous planes of coordinates x2/δω,0 = 0.44 and

x2/δω,0 = 5.11 as in Fig. (3). The DNS-extracted filtered PDF < fsgsc >c is evaluated by

mass-weighted averaging the Z PDF over coarsened-grid planes. The presumed averaged

SGS PDFs are computed employing mapped LES moments (eξ, σξ) and using Eq. (15). As
expected, the figure displays the best prediction when a β PDF is used. The difference

between one-moment and two-moment distributions is evident both in the central part of

the mixing layer (x2/δω,0 = 0.44) and away from it (x2/δω,0 = 5.11). The difference between

the two-moment distributions, Gaussian and β, is also clear, particularly in zones of poor

mixing where a Gaussian distribution is not appropriate.

Figure (5) portrays the corresponding OH750 results over the same x2 planes as for the

HN600 layer. In the OH750 case, no large difference between PDF models are visible which
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is conjectured to result from the high hydrogen diffusivity which promotes good mixing.

Finally, OHe600 layer results are shown in Figure (6). For OHe mixing, the two-moment

PDFs increase the model accuracy compared to the single-moment one, and a β PDF gives

slightly better results than the Gaussian PDF, as expected.

Results from the optimal estimators are displayed in Fig. (7). Because this methodology

is based on conditioning over a couple of moments, the Dirac presumed PDF is not consid-

ered. In order to increase the sample size, the conditional expectations are computed over a

slab of the mixing layer of coordinates x2/δω,0 = ±5.3. As expected, in regions of well-mixed
species, the β PDF and the Gaussian PDF give similar predictions while the β PDF is more

appropriate for unmixed situations.

Thus, we have shown that two methodologies are in agreement regarding the appropri-

ateness of the presumed β PDF shape. However, it is known that for atmospheric conditions

[17] good agreement with a template for averaged distributions (as given by both method-

ologies) does not necessarily imply similar pointwise agreement, so it is important to test

the capabilities of the three distributions of Eqs. (16), (18) and (19) to provide local agree-

ment (as needed in reactive flows) in computations where they would be used to reproduce

filtered non-linear terms (e.g. reaction rates). For this purpose, we select a simple non-linear

Z-function

F (ξ) = exp
n
−2
£
erf−1 (2ξ − 1)

¤2o
, (50)

representing the χ functional form in a one-dimensional unsteady laminar subcritical mixing

layer [47]. Then, the filtered value of F (ξ) may be estimated by integration over the scalar

space using Eq. (13) as

]F (x) =
Z 1

0

F (ξ)fsgsc(ξ;x)dξ. (51)

Figure (8) illustrates scatter plots of the modeled quantity ]F (Z)
mod

(superscriptmod labels a

modeled quantity) versus the exact quantity ]F (Z) extracted from the filtered DNS database

HN600, over two planes, in the central part and at the periphery of the layer. The modeled

functions are computed by replacing fsgsc(ξ;x) in Eq. (51) with the presumed SGS PDF

(Dirac, Gaussian or β) constructed from the exact moments extracted from the filtered DNS

database at t∗tr. The local results are in accord with the assessment of the statistical SGS

PDFs presented in Figs. (4) and (7). A drastic improvement in predictions is obtained by

using the β-PDF in the mixing of heptane and nitrogen. An improvement is also obtained
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for the oxygen/helium system (not shown) while in the oxygen/hydrogen mixing layer the

differences are minor (not shown).

As mentioned in Section III, a clipped Gaussian was also considered. For the filtered

PDF, results using the clipped Gaussian exhibited small differences from those obtained

with the truncated Gaussian for the HN600 mixing layer (not shown), and imperceptible

differences for the OH750 and OHe600 mixing layers (not shown). The clipped Gaussian

also provided slightly more accurate results when used to model the non-linear Z-function

(not shown).

Whereas the Z-function of Eq. (50) is here used only to test the ability of the models to

reproduce nonlinearities, the function is not necessarily expected to represent the real χ for

three-dimensional supercritical flows. This topic is addressed in Appendix A.

C. Evaluation of direct models for the SGS scalar variance

Having shown in Section VIA that under supercritical p conditions modeling of new

terms in the σZ equation is necessary (but uncertain), and shown in Section VIB that well-

known assumed β PDFs may be used in modeling nonlinear scalar-dependent functions, the

next step is to assess models for computing σZ from the filtered DNS solution to enable

the construction of the presumed SGS PDFs. Results from two such models are presented

below.

1. Evaluation of the approximate deconvolution model

All presented results were computed on the DNS (rather than LES) grid. In all figures,

the information is shown for several ∆/∆xDNS values and for each ∆/∆xDNS value for five

orders of reconstruction.

Since Eq. (24) is at the core of the compressible ADM procedure, we first inquired about

the convergence of Z∗∗ to Z according to the approximation of Eq. (25). To explore this

issue, we first computed the local second-order moment of Z∗ and compared it to the exact

moment extracted from the filtered DNS database of the HN600 mixing layer at t∗tr; the

results are illustrated in Fig. (9). Then, we calculated the local second-order moment of

Z∗∗ and compared it to the exact moment extracted from the filtered DNS database of the
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HN600 mixing layer at t∗tr; the results are illustrated in Fig. (10). Whereas the moment

of Z∗ converges to that of Z as N increases, the observations are that the moment of the

deconvoluted approximate field Z∗∗ does not converge to that of Z, and that in some zones

this second-order moment is overestimated. This overestimate occurs for a filter width as

small as 6∆xDNS and the situation deteriorates with increasing values of ∆/∆xDNS. The

r.m.s. activity of the difference between Z∗∗ and Z∗ is presented in Fig. (11). Clearly, this

difference increases with the filter width and it also globally increases with N . In order

to inquire about the impact of the Z∗∗ ' Z∗ approximation on the SGS-scalar-variance

predictions for compressible flows, the ADM procedure is tested using the Favre SGS scalar

variance.

The results of Fig. (12) portray the ADM procedure applied to the primitive variable Z

as in Eq. (21), and the SGS scalar variance is computed using the exact local density and

the approximate field Z∗ as σZ =
¡
ρZ∗Z∗/ρ

¢
−
¡
ρZ∗/ρ

¢ ¡
ρZ∗/ρ

¢
. The results of Fig. (13)

differ from those of Fig. (12) in that the ADM procedure is applied to both conservative

variables ρ and ρZ, as one would do in a practical case, and the reconstructed density

ρ∗ with the approximate field Z∗∗ are used to compute the SGS scalar variance according

to Eq. (26). Comparing Figs. (12) and (13) at same ∆/∆xDNS value, it is clear that

using the ADM on the conservative variables improves the model predictions. For example,

for ∆/∆xDNS = 8, a third-order approximation is sufficient for reproducing hρσZi at the
center of the mixing layer, while by using the primitive quantities only 90% of its value is

recovered. The difference between the ADM based on primitive variables and that based on

conservative variables becomes enlarged as the filter width increases. For small filter widths

(∆/∆xDNS = 2, 4, 6), a second-order reconstruction (3 terms) gives very good agreement

compared to the exact value. Similarly to the observation of Pantano and Sarkar [16] for

incompressible flows, the ADM accuracy depends at least on the level of turbulence, i.e.

the Reynolds number, and on the filter width; here, there is the additional complication of

variable density which introduces Eq. (24). Figures (14) and (15) show corresponding results

for OH750 and OHe600, respectively, when the ADM is performed using the conservative

variables.

Despite the better performance of the ADM conservative-variable based model compared

to the primitive-variable based one for the third-order approximation, the convergence issue

discussed above is still an item of concern when using the approximation Eq. (25). One
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conclusion from the presented assessment is that users of the ADM should be cautious

when employing this methodology for conservative variables in the context of compressible

flows, and results should be carefully verified. Here, because the overestimation of the SGS

second-order moment of Z is combined with an underestimation of ρ, the global result is a

satisfactory prediction of the SGS (Favre) scalar variance. However, ADM should only be

considered here as an approximation rather than an asymptotically convergent expansion.

2. Evaluation of the dynamic gradient-based model

Figure (16) depicts planar averages of the modeled SGS scalar variance conditioned on the

exact one extracted from the filtered HN600 DNS database. The plots represent averages at

t∗tr over a plane close to the center of the mixing layer (x2/δω,0 = 0.44) as a function of ρσZ ,

for several filter widths; the vertical arrow represents hρσZi and provides an indication of
the model fidelity at that particular value. For ∆/∆xDNS = 2, filtering is clearly performed

in the dissipation range, whereas, as an example, for ∆/∆xDNS = 14, 16 test-filtering is

performed close to the production range, and thus neither of these values are in concert

with SGS modeling assumptions, but they are here presented for illustrative purposes. At

∆/∆xDNS = 2, the model based on the Leonard term expansion agrees with the classical

model used in conjunction with the correct filter width, but neither one of the models repro-

duces the exact value, which is better rendered by the classical model utilized in conjunction

with an incorrect filter width; this result should serve as a warning that if SGS modeling is

tested in the incorrect wavenumber range, results from this test are not necessarily reliable.

Over the ∆/∆xDNS = 4 to 8 range, the new model and the classical model using the correct

filter width agree and additionally reproduce the DNS-extracted value, whereas the classical

model utilized with the incorrect filter width overpredicts it; however, the hρσZi value is
equally well predicted by all models. For ∆/∆xDNS = 10, 12, the fidelity of the new model

to predict the exact hρσZi is maintained, but that of the classical model with the correct
filter deteriorates by underpredicting the template, and for ∆/∆xDNS = 12 severe underpre-

dictions are obtained with the classical model in conjunction with the incorrect filter width.

Most important, the classical model used with either filter widths produces incorrect values

even for hρσZi, whereas the new model maintains high fidelity for this quantity. The robust-
ness of the new model is highlighted by the ∆/∆xDNS = 14, 16 results where its predictions
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are still excellent whereas those with the classical model used with the correct filter width

display severe deteriorations and those of the classical model using the incorrect filter width

are totally compromised by producing negative values of the SGS scalar variance. Similar

to the ∆/∆xDNS = 10, 12 situation, hρσZi is correctly only predicted by the new model,
and negative values of the SGS scalar variance are exhibited by the classical model in con-

junction with the incorrect filter width. To show that these comparisons are not x2-plane

dependent, scatter plots at t∗tr of modeled SGS scalar variances against actual values for

several filter widths, over a plane close to the periphery of the mixing layer (x2/δω,0 = 5.11)

are illustrated in Fig. (17). Only for ∆/∆xDNS = 8 do the scatter plots overlap for all three

models, and predicted negative variances by the classical model using the incorrect filter

width appear for a filter ratio of ∆/∆xDNS = 12 which is smaller than the 14 and 16 where

we found negative values in the x2/δω,0 = 0.44 plane.

The Figs. (16) and (17) results were for two selected x2 planes. To further evaluate the

potential of the various models we illustrate in Fig. (18) comparisons of the modeled hρσZi
with the exact one for the same ∆/∆xDNS values and for the entire x2 significant range.

The advantage of the new model over the classical model using the correct filter width is

evident for as small value as ∆/∆xDNS = 8, and comparing with the classical model using

the incorrect filter width for as small value as ∆/∆xDNS = 4. The high fidelity of the new

model persists at large ∆/∆xDNS whereas it substantially deteriorates for the other two

models with increasing ∆/∆xDNS values. The model coefficients computed with the three

models are depicted in Fig. (19). The indications are that over all x2-planes of the mixing

layer, the use of the Leonard term expansion for the dynamic model yields model coefficient

values which span a smaller range at fixed ∆/∆xDNS value than those of the classical model,

thereby showing greater potential in maintaining stability of a LES computation.

Corresponding results for the OH750 database are displayed in Fig. (20), (21), (22), and

for the OHe600 database are depicted in Figs. (23), (24), (25). For the OH750 conditional

averages and mean profiles, the advantage of the new model predictions are less drastic

when compared to the classical model than for the HN600 database. The new model and

the classical one with the correct filter width are in close agreement, while their results

differ from those using the classical procedure with the incorrect filter width b∆ = ∆. For the

OHe600 database which has the highest Retr value among the three examined, the results

at small to moderate ∆/∆xDNS values are the same as for HN600 for the x2/δω,0 = 0.44
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conditional averages, however, for large ∆/∆xDNS values close to the production range the

predictions from all three models at this particular x2-coordinate converge and underestimate

the exact value. The advantage of the new model is though evident for predicting the mean

SGS variance value (Fig. (24)) over all x2-planes of the mixing layer even at large ∆/∆xDNS

values.

D. Modeled scalar variance in conjunction with the presumed-PDF approach

As a recall, the results of Fig. (8) were obtained with the exact moments of the SGS PDF,

as extracted from the filtered DNS database. It is thus important to explore the potential

of the two SGS-scalar-variance models examined in Section VIC, namely the ADM using a

third-order approximation and the new dynamic gradient-like model. To this end, we use

each of these models to construct the β- PDF and assess their performance in reproducing

the same filtered non-linear Z-function of Eq. (50), as in Section VIB. Predictions are

illustrated in Fig. (26) for HN600 at ∆/∆xDNS = 8 and x2/δω,0 = 0.44, as an example.

Each of the models is evaluated through scatter plots. Independent of the SGS-scalar-

variance model used, the predictions are excellent, showing a priori the potential of the new

σZ models combined with a PDF approach to reproduce filtered non-linear functions of the

scalar, as would be the dissipation rate, reaction rates, etc. Examining the scatter plots, the

ADM results show a smaller dispersion than the gradient-based model. On the other hand,

the former is more expensive than the latter and the ADM exhibits convergence problems

of the deconvolution series for compressible flow, casting uncertainty on success at high

Reynolds numbers where convergence will be further influenced by turbulence-dependent

aspects.

VII. SUMMARY AND CONCLUSIONS

The goal of this study was to investigate the modeling of the SGS scalar variance un-

der supercritical-pressure conditions where the real-gas equation of state, the full (3-term)

expression for the species mass diffusion flux and transport properties varying with the ther-

modynamic variables, all preclude assuming that the same models as those at atmospheric-

pressure conditions are valid. To this end, we followed the classical approach whereby
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the SGS scalar variance equation is derived and terms non-computable from the LES so-

lution are modeled, with the intent of providing closure and solving the equation. Thus,

we first developed the equation describing the evolution of the SGS scalar variance un-

der supercritical-pressure conditions and highlighted its complexity, particularly recognizing

terms not present under atmospheric-pressure conditions. We also presented a second form

of the equation which was more adept at highlighting the nature of the new SGS terms and

their contributions. The activity of terms in the first form of the equation was examined

using a filtered DNS database represented by transitional states describing the mixing of

binary species, for three systems of species, under supercritical pressure conditions. The

findings were that the activity of some of these new terms is of same magnitude as that

of classical terms, meaning that they cannot be neglected. Most important among these

new terms were those expressing subgrid activity due to spatially variable diffusion coeffi-

cients. The second form of the equation confirmed the importance of the SGS diffusivity

and identified for this equation a new dissipation contribution arising from the Soret term.

Recognizing that no SGS models are available to model these terms, and thus to close the

SGS scalar variance equation, the attention was instead refocused on a second method, that

is, the direct modeling of the SGS scalar variance.

This second route first involved examining the SGS PDF of the scalar by assuming the

form of the PDF and using the same filtered DNS database to extract the exact moments of

the PDF. Three PDF forms were investigated - the Dirac, Gaussian and β PDF - and the

results showed that they ranked in increasing success in the order cited. This encouraging

ability of the β PDFmotivated the development of two direct models for the SGS scalar vari-

ance. The first SGS-scalar-variance model was based on the ADM procedure reformulated

for application to compressible flows. The second SGS-scalar-variance model was based on

a gradient-like dynamic model using the Leonard term expansion. Success with these two

models motivated a reassessment of the ability to model a filtered non-linear function of

the scalar by using the β PDF in conjunction with either one of these models for the SGS

scalar variance, and with the mean computed from the filtered DNS. The findings were that

either one of the direct SGS scalar variance models provided a high-fidelity duplication of

the DNS-extracted SGS PDF, which is manifested by the excellent reproduction of a filtered

non-linear function of the scalar. Although the ADM was generally more accurate than the

gradient-based model, it was shown that the ADM procedure is not necessarily convergent
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for compressible flows; thus, the results could be interpreted as an approximation rather

than a model the accuracy of which asymptotically increases with series higher truncation

order.

Therefore, although supercritical-pressure conditions entail new challenges in the model-

ing of the SGS scalar variance, these challenges were met for describing the mixing of several

binary-species systems. Further a posteriori studies should reveal the true potential of these

models, and applications to reacting flows would represent the ultimate test.

APPENDIX A: ASSESSMENT OF THE ONE-DIMENSIONAL LAMINAR

SCALAR DISSIPATION FOR TRANSITIONAL SUPERCRITICAL-PRESSURE

MIXING LAYERS

The dissipation rate in the context of the flamelet model is often modeled in the framework

of a one-dimensional counterflow [48]. Under this assumption, an analytical solution for the

dissipation rate is available under subcritical conditions [1] which is the functional form

of Eq. (50). In order to evaluate whether this form still holds in the present case, the

averages of both χT and χF of Eqs. (48) and (49) are computed from the DNS conditioned

on F (Z) (Eq. 50). The results are illustrated in Fig. (27). For both χT and χF , there is

a linear dependency on F (Z) in zones corresponding to large values of Z, while departures

are observed for smaller values of Z. This indicates that F (Z) is unreliable since it cannot

handle regions of fluid mixing where the gradients would be largest.
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FIG. 1: Planar r.m.s. activity of terms in Eq. (4) as extracted from the filtered DNS databases at

t∗tr. Top: HN600; center: OH750; bottom: OHe600. ∆/∆xDNS = 8. Units are kg/(m3 s).
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FIG. 2: Planar averages (left) and planar r.m.s. activity (right) of terms in Eq. (9). Extracted from

the filtered DNS databases at t∗tr. Top: HN600; center: OH750; bottom: OHe600. ∆/∆xDNS = 8.

Units are kg/(m3 s).
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FIG. 8: Scatter plot of the modeled function ]F (Z)
mod

versus the exact quantity ]F (Z) computed

over planes x2/δω,0 = 0.44 (left) and x2/δω,0 = 5.11 (right). The exact quantity is the filtered

HN600 DNS at t∗tr and the models are the Dirac PDF (top), Gaussian PDF (center) and β PDF

(bottom). ∆/∆xDNS = 8.
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scalar variance: solid line. Dotted lines are the first to fifth order approximations, the third order

being distinguished by a dash-dotted line. Variances are non-dimensionalized by the exact value
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FIG. 13: Predictions of the Favre SGS scalar variance using ADM applied to conservative quan-

tities. Several orders of approximation are shown for different filter widths at t∗tr for the HN600

mixing layer. Exact SGS scalar variance: solid line. Dotted lines are the first to fifth order

approximations, the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.46
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FIG. 14: Predictions of the Favre SGS scalar variance using ADM applied to conservative quan-

tities. Several orders of approximation are shown for different filter widths at t∗tr for the OH750

mixing layer. Exact SGS scalar variance: solid line. Dotted lines are the first to fifth order

approximations, the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.47
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FIG. 15: Predictions of the Favre SGS scalar variance using ADM applied to conservative quan-

tities. Several orders of approximation are shown for different filter widths at t∗tr for the OHe600

mixing layer. Exact SGS scalar variance: solid line. Dotted lines are the first to fifth order

approximations, the third order being distinguished by a dash-dotted line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.48
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FIG. 16: Planar averages of modeled SGS scalar variances conditioned on the exact ones, evaluated

using the filtered HN600 DNS at t∗tr, over the plane x2/δω,0 = 0.44. Coefficients are computed using

the new model (Eq.(47)) (squares), and the classical model (Eq.(46)) with either b∆2 = b∆2 +∆2
(empty circles) or b∆ = b∆ (filled circles). The arrow indicates the mean quantity hρσZi .
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FIG. 17: Scatter plot of modeled against exact SGS scalar variance evaluated using the filtered

HN600 DNS at t∗tr, over the plane x2/δω,0 = 5.11. Coefficients are computed using the new model

(Eq.(47)) (blue symbols), and the classical model (Eq.(46)) with either b∆2 = b∆2 + ∆2 (black
symbols) or b∆ = b∆ (red symbols). R ≡ ∆/∆xDNS .
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FIG. 18: Profiles of modeled and exact SGS scalar variances, evaluated using the filtered HN600

DNS at t∗tr. Exact values: solid line. New model: dash-dotted line. Classical model usingb∆2 = b∆2 + ∆2 : dotted line. Classical model using b∆ = b∆ : dashed line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.
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FIG. 19: Model coefficients Cd evaluated using the filtered HN600 DNS at t∗tr. New model: dash-

dotted line. Classical model using with b∆2 = b∆2+∆2 : dotted line. Classical model using b∆ = b∆ :
dashed line.
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FIG. 20: Planar averages of modeled SGS scalar variances conditioned on the exact ones evaluated

using the filtered OH750 DNS at t∗tr over the plane x2/δω,0 = 0.44. Coefficients are computed using

the new model (Eq.(47)) (squares) and the classical model (Eq.(46)) with either b∆2 = b∆2 +∆2
(empty circles) or b∆ = b∆ (filled circles). The arrow indicates the mean quantity hρσZi .
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FIG. 21: Profiles of modeled and exact SGS scalar variances evaluated using the filtered OH750

DNS at t∗tr. Exact values: solid line. New model: dash-dotted line. Classical model usingb∆2 = b∆2 + ∆2 : dotted line. Classical model using b∆ = b∆ : dashed line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.
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FIG. 22: Model coefficients Cd evaluated using the filtered OH750 DNS at t∗tr. New model: dash-

dotted line. Classical model using b∆2 = b∆2 + ∆2 : dotted line. Classical model using b∆ = b∆.:
dashed line.
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FIG. 23: Planar averages of modeled SGS scalar variances conditional to exact ones evaluated

using the OHe600 DNS at t∗tr over the plane x2/δω,0 = 0.44. Coefficients are computed using the

new model (Eq.(47)) (squares) and the classical model (Eq.(46)) with either b∆2 = b∆2+∆2 (empty
circles) or b∆ = b∆ (filled circles). The arrow indicates the mean quantity hρσZi .
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FIG. 24: Profiles of modeled and exact SGS scalar variances evaluated using the filtered OHe600

DNS at t∗tr. Exact values: solid line. New model: dash-dotted line. Classical model usingb∆2 = b∆2 + ∆2 : dotted line. Classical model using b∆ = b∆ : dashed line. Variances are non-

dimensionalized by the exact value at the center of the mixing layer.
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FIG. 25: Model coefficients Cd evaluated by using the filtered OHe600 DNS at t∗tr. New model:

dash-dotted line. Classical model using b∆2 = b∆2+∆2 : dotted line. Classical model using b∆ = b∆ :
dashed line.
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FIG. 26: Scatter plot of the modeled function ]F (Z)
mod

versus the exact quantity ]F (Z) computed

over the plane x2/δω,0 = 0.44. The evaluation is made for the filtered HN600 DNS at t∗tr, using

the scalar variance σZ modeled employing a third-order ADM (left), and the new dynamic model

(right). ∆/∆xDNS = 8.
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FIG. 27: Conditional average of χT (circles) and χT (stars) on F (Z) given by Eq. (50). The

computations used the HN600 DNS at t∗tr over planes corresponding to x2/δω,0 = 0.44 (left) and

x2/δω,0 = 5.11 (right). ∆/∆xDNS = 8.
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Thermomechanical Response of a Reactive Gas to Extremely Rapid Transient,  

Spatially Distributed Energy Addition: An Asymptotic Formulation 

 

D. R. Kassoy1, K. Wojchiechowski2 

Abstract 

An asymptotic formulation developed for inert gas heating ((Kassoy, DR., 2010, J. Eng.Math, 68, 249-262). is 

extended to describe the thermomechanical response of a reactive gas to a localized, exothermic chemical reaction. 

The model is developed for a subcritical, perfect gas with one-step, high activation energy exothermic kinetics.  A 

finite volume of gas (the hot spot) is heated initially by an external source on a time-scale short compared to the 

acoustic time of the region, with the objective of raising the local temperature sufficiently to ignite a robust rapid 

reaction.  The analysis defines physical and chemical conditions compatible with nearly inertially-confined heating. 

Numerical solutions to the describing equations show that a spatially distributed reaction wave appears 

spontaneously in the hottest portion of the hot spot, propagates initially through the relatively slowly moving fluid at 

a supersonic speed (relative to the hot gas speed of sound) and then decelerates significantly and steepens 

considerably as the front nears the much colder boundary of the hot spot.  The configuration evolves toward a 

discontinuous front separating hot, high-pressure, burned gas on one side from cold, low pressure reactant on the 

other side.  During the relevant heating time scale the entire process occurs in a nearly incompressible medium, 

leading to an ephemeral, isolated, burned out, hot, high pressure spot embedded in a cold unreacted, lower pressure 

gas.  The large pressure gradient at the front induces a local positive radial fluid velocity. Fluid expelled from the 

hot spot boundary acts as source of mechanical disturbances propagating into the neighboring cold reactant.  The 

amplitude of those disturbances depends upon the energy addition level during the reactive phase of the hot spot. 

The formulation also identifies conditions compatible with a fully compressible heat addition process, characterized 

by a very significant internal expansion Mach number, likely the source of reactive blast wave generation in the 

environmental reactant. 
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1.  Introduction 

Oppenheim and Soloukhin [1] state that “Gasdynamics of explosions is best defined as the 

science dealing with the interrelationship between energy transfer occurring at a high rate in a 

compressible medium and the concomitant motion set up in the medium.”  This perceptive 

insight challenges the modeler to relate quantitatively transient, spatially resolved energy 

deposition into a hot spot to changes in the thermodynamic state, and the induced fluid motion, 

as well as to predict the acoustic and/or gasdynamic disturbances generated in the unheated 

gaseous environment beyond the hot spot boundary. 

  An initial step toward developing a comprehensive thermomechanical theory for hot spots 

has been developed by Kassoy [2].  An external source provides spatially distributed, transient 

heat addition to a finite volume of inert gas on a time scale short compared to the acoustic 

time of the heated region.  Asymptotic methods are used to derive reduced equation systems 

that describe hot spot evolution resulting from a wide range of energy addition. The results 

demonstrate that nearly-inertially confined heat addition occurs within the hot spot if the 

amplitude of energy is less than a critical value.  This type of nearly constant volume heating is 

characterized by a synchronized increase in spatially distributed temperature and pressure, very 

small changes in density and a tiny internal expansion Mach number.  Hot gas expelled from the 

volume at a locally small Mach number (the “piston” effect [3]) during the heating process 

generates only acoustics in the neighboring cold gas (the far-field). Sufficiently large energy 

addition leads to a fully compressible heat addition process.  Much larger “piston” Mach 

numbers are the sources of far-field shock and blast wave propagation. Extension of the 

theoretical framework to reactive gases and other time scales is the subject of the present work.  

Localized hot spots are common in a wide range of reactive gasdynamic processes, most 

notably detonation initiation [1].  One class of hot spot arises from relatively rapid, localized 
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thermal energy deposition from an external source into a volume of reactive gas (e.g., laser or 

spark). Another, the “reaction center” [1] arises spontaneously during the evolution to 

detonation.  The modeling and experimental literature on the subject is extensive, and is referred 

to within the limited number of references cited in this work. 

Sufficiently fast and large energy addition can facilitate a direct initiation. Clarke, Kassoy 

and Riley [4] and Clarke, Kassoy Maharzi, Riley and Vasantha [5] model detonation initiation 

following spatially-resolved transient energy deposition from a planar boundary via 

conduction into an adjacent reactive gas in a semi-infinte domain. The Navier-Stokes equations 

are integrated numerically to reveal a quantitative time-history of spatially resolved reactive 

gasdynamic processes that lead to planar detonation formation.  The authors recognize that 

“…direct initiation of detonation requires sufficient power input to first of all generate a suitably 

strong precursor shockwave, which then becomes the trigger to switch on vigorous chemical 

activity in its wake.  The hall mark of this vigor is its capacity to exploit the inertia of the fluid 

by raising local pressures and temperatures, with little diminution in local density; the pressure 

waves so formed propagate and increase precursor shock strength which therefore lifts the 

overall density levels, as well as those of pressure and temperature.  All of these processes 

interlock in a continuously accelerated sequence that progresses towards a steady state….ZND 

detonation.”  

Mazaheri [6] and Eckett, Quirk and Shepherd [7,8], model planar and spherical detonation 

initiation, respectively, initiated by blast waves subsequent to instantaneous deposition of 

energy at a plane or a point. Energy deposition criteria are used to distinguish between 

sustained and failed detonations.  Computational modeling results demonstrate that blast wave 

propagation through unreacted gas mixture leads to the formation of localized regions of rapid 
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chemical heat release (thermal explosions) characterized by relatively high temperature and 

pressure, similar to those found in Refs. 9-11.  These hot spots are the subsequent sources of 

compression waves that may run up to and strengthen the blast wave front enough to generate 

and sustain a classical detonation (shock coupled to a reaction zone).  

Sileem, Kassoy and Hayashi [12],  (SKH), Kassoy, Keuhn, Nabity and Clarke [13,14], 

(KKNC), Regele, Kassoy and Vasilyev [15] model the reactive gas response to relatively smaller 

spatially distributed, transient energy deposition into a finite target volume. They describe 

the sequence of reactive gasdynamic events occurring in a deflagration to detonation transition 

(DDT), including the initially heated volume and the spontaneous appearance of local hot spots 

far from the original energy deposition.  Computational results, based on MacCormack 

numerical methods with fixed grids [12-14] and the Adaptive Wavelet Collocation Method [15], 

resolve hot spot transients facilitating the detonation initiation process.  

Gu et al. [16] use computational solutions to the Euler equations with multistep kinetics 

relevant to H2-CO-Air and H2-Air mixtures to identify five distinct modes of reaction front 

propagation arising from a preexisting local hot spot.  They find that evolution of the detonative 

mode depends on the temperature distribution properties of the hot spot and “…the ratio of the 

hotspot acoustic time to the heat release rate excitation time…” 

Detonation initiation associated with reflected shocks and shock flame interactions, studied 

intensively by Oran and co-workers beginning in the 1980’s, and reviewed by Oran and Gamezo 

[17] is also affected substantially by hot spot dynamics.  In fact, nearly all studies of detonation 

initiation contain qualitative descriptions of the role played by hot spots in the development of 

detonations.  Since the early experimental observation by Oppenheim [18] of an “explosion in an 

explosion” (reaction center) it has been argued that hot spots are local sources of compression 
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waves that strengthen existing lead shocks to promote the existence of coupled reaction zones.  

That argument depends on the simultaneous local increase in temperature and pressure caused by 

localized chemical heat release in a nearly inertially confined fluid volume (constant volume 

heating) characterized by a minimal change in density. 

Zeldovich and co-workers [19,20] articulate an intuitive theory for the initiation and 

“…(spontanteous) propagation of intense chemical reaction...” arising from a pre-existing hot 

spot with a localized linear temperature gradient. The authors describe a model for constant 

volume thermal explosion phenomena (“…in each particle of the substance, thermal explosion 

occurs independently.”).  The chemico-physical conditions necessary for this type of reaction 

wave initiation and propagation are not articulated.  

Many researchers have endeavored to rationalize the Zeldovich model concept.  Jackson, 

Kapila and Stewart [9], Short [10,11], Kapila, Shwendeman, Quirk and Hawa [21], have used a 

combination of asymptotic and computational methodologies to model the evolution of spatially 

distributed thermal explosions arising from a pre-existing localized linear temperature 

gradient in a rigid container. Asymptotic results describe spatially distributed, transient 

chemical heat release during a relatively lengthy induction period, followed by much shorter 

periods of extremely rapid energy deposition (the explosion) into a relatively tiny spatial volume.  

Comprehensive asymptotic and numerical results in Ref. 21 provide an excellent assessment of 

the impact of the temperature gradient slope on the combustion wave evolution.  Many of the 

observed effects can be attributed to differences in the local chemical heat release time and the 

local acoustic time, exploited formally in Ref. 2.  These confined hot spot theories [9-11,21] 

describe the thermomechanical properties of the chemically heated gas, but are not formulated to 

describe the impact of focused rapid heat release on gases external to the heated region. 
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The current analysis extends the asymptotic methodology in Ref. 2 to a reactive gas with 

one step, high activation energy Arrhenius kinetics.  Initially, an external source provides 

thermal power to a finite volume of gas on a time scale short compared to the acoustic time of 

the heat region.  The resulting near-constant volume heat addition causes a relatively modest 

temperature increase, insufficient to initiate the high activation energy reaction.  Continued 

power deposition on a slightly longer time scale, but shorter than the acoustic time of the 

volume, leads to a temperature increase large enough to facilitate a strong reaction.  This strategy 

obviates the need for a more traditional induction period thermal explosion analysis.  The 

reaction evolution and subsequent front propagation occurs in a near-constant volume process as 

long as the energy addition is limited. When the energy added reaches a specific critical level, 

inertial confinement fails and the entire reaction event is described by fully compressible 

equations.  This result provides quantitative chemico-physical conditions for the validity of the 

Zeldovich spontaneous propagation model. 

2. Modeling Concepts 

A finite spheroidal volume V´ of spatially uniform reactive gas mixture 0 0 0( ,  ,  )p T    with an 

average radius ,R  is heated by absorbing thermal power P (J/kg.) from an external source on a 

heating scale .Ht  
 How can the modeler quantify the response of the gas volume (the near-field) 

to the energy deposition, (J/kg.)?HE P t    What are the magnitudes of the induced motion and 

thermodynamic variable changes?  How does the near-field response affect the unheated gaseous 

environment (the far-field)?  Thermo-mechanical concepts can be employed to address these 

questions.  Kassoy [2] has used asymptotic methodologies to describe the consequences of  

energy deposition, 0 0vE e C T     (the initial internal energy) into a finite volume of inert gas 
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when 1,H At t    where 0At R a    is the characteristic acoustic time and 0a  is the speed of 

sound based on the initial spot temperature 0.T    During this brief period of heating, an acoustic 

disturbance can propagate only a small distance compared to the spot dimension .R  When E is 

less than a specific critical value the heating process is nearly constant volume (inertial 

confinement), characterized by asymptotically small values of density variation along with a 

large, lowest order, constant volume temperature increase as well as a concomitant large rise in 

pressure.  During this period of near-inertial confinement, the thermo-mechanically induced 

near-field gas Mach number (based on the local hot speed of sound, a R T    is very small, 

implying that the preponderance of the absorbed thermal power is used to enhance the internal 

energy of the gas.  Very little thermal power is converted to kinetic energy.  A limited range of 

-valuesE exist for which the Mach number of the gas expelled from the edge of the volume is 

asymptotically small.  The “piston” effect of the expansion generates only small amplitude 

acoustic waves in the far-field. Larger values of ,E but less than the aforementioned critical 

value, are associated with stronger “piston” effects that are the source of more robust 

gasdynamic disturbances in the far-field, similar that described in [22]. 

When E reaches the critical magnitude, the heat addition process is determined to be 

completely compressible, characterized by large increases in temperature and pressure as well as 

an O(1) or larger internal Mach number.  There is significant conversion of thermal to kinetic 

energy in the near-field.  The relatively violent expansion process is the source of strong blast 

waves in the far-field [23]. 

The application of these thermomechanical concepts to a reactive gas is affected by the 

highly nonlinear temperature dependence of exothermic chemical reactions, particularly for high 

activation energy kinetics.  As a result there will be consequential differences in the outcomes 
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arising from rapid chemical heat release.   The questions raised in the first paragraph of this 

section remain germane for the reactive case.  The answers may help to understand how 

transient, spatially distributed heat release in a reactive flow can be the source of acoustic and 

gas dynamic disturbances (e.g. solid and liquid rocket engine dynamics, internal combustion 

engines).   

The conceptual model description provides physically-based insights into the 

thermomechanics of gases affected by localized, relatively rapid, transient energy addition.  The 

mathematical model used in Ref. 2 provides quantitative assessments of the physics, a systematic 

scheme based on formal asymptotic methods, including a complete understanding of the model 

limitations. A well-defined thermomechanical analysis for a reacting flow is described in the 

next section. 

2.1  Mathematical Model 

Imagine thermal power deposition into a spheroidal volume of characteristic dimension R  

during a heating time period Ht  such that 0/COLL H At t t R a      where COLLt  is the collision 

time for the reactive gas mixture.  The gas is initially at rest with density, pressure, and 

temperature 0 0,  P   and 0 ,T   respectively, while the ambient speed of sound,  
1/2

0 0 .a R T     A 

simple one-step high activation Arrhenius exothermic reaction, R  P, is assumed to describe 

the chemistry. 

The mathematical model is based on the equations for a compressible perfect reactive gas 

with transport effects included.  Conservation and state equations in three spatial dimensions 

 ,  ,  r   and time  t  can be written in the nondimensional form: 
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0u                      (1)

p
u u u V   




                     (2)

   1 1 Pr
e

C
T u T p u H Q

 
     

 

 
             

  
      (3) 

/ 1
     ,     

Sc
AT TY u Y Ye D p T


  




                 (4a,b) 

where the three-dimensional vector operators are in spherical coordinates.   

The equations can be nondimensionalized initially with variables (unprimed) defined by

   0 0 0 0, , ,  ,       ,     p T p p T T u u a                      (5a,b)

    ,      Hx x R t t                     (6a,b)

2

0 0 0 0 0 0 0

2 2 2 2
   ,      ,      ,   

a k T a
V V C C D D

R R R R

       
      

   

D
       (7a,b,c,d)

  0 0, , ,      ,          ,     AT T

e A A A gQ Q r Ye T T T T E R                      (8a,b,c)

     ,          ,     H A H V Ht t t t t B                         (9a,b,c)

2 2

0 0     ,          ,     ch
ch ch e e

e

H
H H a H H a

H


          


             (10a,b,c) 

where V, C,  and D are symbols representing the dimensionless viscous vector, scalar 

conduction, scalar viscous dissipation and scalar mass diffusion, respectively.  In addition, 

0 0,  k   and 0
D  are the characteristic viscosity, conductivity and diffusivity at ,oT   respectively.  

Equation 8a contains the external power source  / /e e e HQ Q H t     where 
eQ   is the dimensional 

power source and /e HH t   is the characteristic dimensional power deposition, composed of the 

characteristic energy eH   added on the heating time scale .Ht   In addition,  is a 
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nondimensional pre-exponential factor defined in (10a), where Hch is the nondimensional 

chemical heat of reaction, measured with respect to  2

0 01 ,a e    a surrogate for the initial 

internal energy, 0e  at 0T   and  is defined in (9c) as the ratio of the heating time to the inverse 

pre-exponential factor 
1,B   for a one-step reaction.  Similarly, He, in (10c), is the 

nondimensional externally added energy, also measured with respect to 2.oa   Y is the mass 

concentration of fuel, initially distributed uniformly at 1.  The nondimensional activation 

temperature TA is defined in (8b) with respect to the initial temperature 0 ,T   where the 

dimensional activation temperature is defined in (8c) in terms of the dimensional activation 

energy 0E  and the universal gas constant .gR  It is assumed that the characteristic heating time 

0/H At t R a     so that the parameter  defined in (9a) is very small.  It is noted from (9b) that 

the characteristic viscous time 2

0/vt R     is much larger than the heating time because 

0

0

/H v

a R
t t 



 
  


 where the acoustic Reynolds number 0 0/a R     is large for  810 .R O m   

The Prandtl and Schmidt numbers as well as  have standard definitions and are treated as O(1) 

constants, relatively to the small parameter . 

 Equation (3) is written for a constant specific heat to provide a relatively elementary model.  

This assumption has the disadvantage of precluding activation of internal energy modes at high 

temperature.  Limitations are discussed in Section 3. 

 The rest-state initial conditions are 

0 :      1   ,   0   ,   0eP T u Q                      (11) 

In general, the spatially distributed, time-dependent external source function can be described by 
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   

   

,  ,  ,  0 , ,       ,

,  ,  ,  0 , ,       ,

e s

e s

Q r r r

Q r r r

    

    

 

 
               (12) 

where    , , /s sr r R      describes coordinates of the outer surface of the heated region.  The 

volume beyond the spot surface is not heated by the source. 

 The nondimensional equations, (1)-(4), describe reactive flow dynamics for a wide range of 

length and time scales.  Table 1 provides estimates for the acoustic At  and viscous vt  times for 

several values of R  and the allowable range of heating time values ,Ht  such that 

.COLL H At t t     The numerical values for At  are defined for a gas initially at 0 300T   K and 

1 atm.op   These ambient values are associated with a mean free path 
85.3 10  m,     a 

collision time 101.6 10  sCOLLt     and a characteristic kinematic viscosity 5 2

0 1.64 10  m /s.     

 Asymptotic methods, based on the time-ratio limit   0, are used to obtain reduced 

equation systems for several phases of the heating process, reaction initiation, and the 

accompanying generation of gasdynamics waves.  It is assumed that Pr = O(1), Sc = O(1), and 

that   0 (see 7b) because the viscous diffusion time defined previously is typically orders of 

magnitude larger than the heating time.  Finally, it is assumed that the activation temperature 

defined in (8b,c),   1,A AT T   where the specific functional dependence is defined later in 

the analysis. 
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Table 1 – Characteristic values of the acoustic time At  and the viscous time vt  and the allowable 

range of heating times Ht  for a range of characteristic spot dimensions R  when 0 300T   K, 

0 1P  atm and 5

0 1.64 10    m
2
s 

(m)R  
0/ ( )At R a s    (s)Ht  2

0/ (s)vt R     

10
-2 

3  10
-5 

10
-6 6.1 

10
-3 

3  10
-6

 10
-7 

6.1  10
-2 

10
-4 

3  10
-7 

10
-8 

6.1  10
-4 

10
-5 

3  10
-8

 10
-9 

6.1  10
-6 

10
-6 

3  10
-9

 
COLLt  6.1  10

-8 

  
COLLt  – – 

 

2.2 Inert Heating Period:   Ht O t   

(a) Internal spot dynamics: r  rs (,) 

 The limiting forms of (1), (2) and (4a) for   0 and TA ()  ,   = u  = Y = 0 and the 

relevant initial conditions in (22) imply that u0 = 0 and 0 = y0 = 1, where the zero subscript 

represents the lowest order asymptotic approximation to each of the dependent variables.  It 

follows from (4b) that p0 = T0 where the temperature distribution is described by the reduced 

version of (3) and the appropriate initial condition respectively; 

   0

0

1 , , ,

0  ;  1

e e

T
H Q r

T

    





  



 

  (13a,b) 

Equation (13) describes constant volume heating due to energy deposition represented by .eQ   

The characteristic changes in temperature,  0/ 1T T O    and pressure,  0 0/ 1 ,p p O    occur 



13 
 

for He = O(1) and finite values of .  Chemical heating plays no role in this time-frame because 

the activation temperature, TA in (8b,c), is assumed to be large. 

 The fluid dynamic response to the spatially distributed temperature and pressure (T0, p0) can 

be obtained by substituting the transformed density and velocity variables, 

21      ,     R u U       (14a,b) 

Into (1), (2) and (11) and taking the limit   0.  The reduced momentum and conservation of 

mass equations, along with initial conditions, 

 0
0 0     ,    , , ,0 0

p
U U r


 




     (15) 

 0 0 0     ,     , , ,0 0R U R r


      (16) 

describes gas motion induced by the pressure (temperature) gradient created by spatially 

distributed heating from ,eQ  and the concomitant density variation.  Equations (5a) and (14b) 

can be used to show that the local gas speed is characterized by  0O a   or the local Mach 

number, u/T
1/2

 = O(), is very small.  Solutions to (13), (15) and (16) can be written in quadrature 

form; 

   0 0 0

0

ˆ ˆ1 1 , , ,      ,     e eT H Q r d p T



           (17a,b) 

0 0

0

1
U T d






     (18) 

0 0

0

     ,R U d



     (19) 

for r  rs (, ) defined in (12) where  represents the gradient operator in spherical coordinates. 

Relatively elementary (analytical) solutions can be obtained for a model source function, 
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     ,      ,eQ w r F g     (20a) 

where 

   0     ,     ,      ,sw r r r      (20b) 

   0     ,     ,      ,sw r r r      (20c) 

 0 0     ,g    (20d) 

  0     ,     0     ,g      (20e) 

 lim 0     ,     g constantg g


  


     (20f) 

The energy deposition associated with the source is confined to a targeted region r < rs (,), and 

is assumed to asymptote to a purely spatial distribution for large values of the time variable . 

 The time-varying spatial variation in temperature, found by substituting (20a) into (17), is 

determined by the product w(r)F(,); 

         0

0

ˆ ˆ, , , 1 1 ,eT r H w r F g d



              (21) 

Then from (18) and (19) the velocity and the density perturbation are described by 

         
ˆ

0

0 0

ˆ, , , 1 ,eU r H w r F d g d

 

                  (22) 

         
ˆ

2

0

0 0 0

ˆ ˆ ˆ, , , 1 ,eR r H w r F d d g d

  

                    (23) 

The definition of the source function w(r) in (20b,c) can be used in (21) and (22) to show that at 

the edge of the spot r = rs (,), the temperature T0(rs,,,) = 1, the radial velocity component is 

     
 

 
ˆ

0

0 0

ˆ, , , 1 ,
s

r s e

dw r
U r H F d g d

dr

 

               (24) 
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while the angular components U0 and U0 vanish.  Equation (23) shows that the density 

perturbation at the edge R0(rs,,,) can be nonzero. When dw/dr(rs)  0, the radial velocity at 

the spot edge in (24) is the source of acoustic waves in the adjacent cold gas environment that are 

described in section 2.3, below. 

 Example solutions of (21)-(23) for a simple spherically symmetric source defined by 

         cos 2    ,   , 1   ,   1    ,   1w r r F g g e r    

      (25a,b,c) 

are  

   0 1 1 cos 1
2

e

r
T H g e 

   

        (21a) 

 
2

0 1 sin 1
2 2 2r e

r
U H g e   

  



 
      

 
 (22a) 

 
3 2

0 1 cos sin 1
2 2 2 2 6 2

e

r r
R H g e      

  



  
          

  
 (23a) 

where the spatial structure is determined by w(r) in (25a) and the time dependence follows from 

g() in (25c).  The temperature distribution in (21a) is radially symmetric with a maximum at 

each value of  located at r = 0, and a minimum at r = 1.  The spatial amplitude at each radial 

location grows linearly with (1)O due to the sustained energy input.  Meanwhile, the 

thermomechanically-induced radial fluid speed increases from zero at r = 0 to a maximum at        

r = 1; 

 
2

01   ;   1 1      .
2 2

rr U e  
    

       
   

 (26) 

 When  Ht O t   or  = O(1), this accelerating edge speed, associated with an O() local 

Mach number, given the definition in (14b), is a “piston-like” source of acoustic waves [3].  The 
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waves can move a distance    0 ,w Hr O t a O R       small compared to the spot dimension 

itself.  It should also be noted that the fluid itself is convected a characteristic distance 

 2 .Fr O R    

 The mass loss at the edge (r = 1) compatible with (26) causes a density decrement within the 

hot spot, described by (23a).  The spatial structure function is positive for O  r  1 and the 

spatial amplitude increases like O(3
) for (1).O   Note that R0 (r = 1, ) < 0 implying that the 

density (14a) is slightly smaller than the initial value.  

2.3 Local Linear Acoustics: r  1 

The acoustic region variables, defined by 

   1   ,   0     ,          ,     1,  1,  1 , ,      ,r r r u U p T p R T            (27a,b,c) 

with 0Q   are used to describe an acoustic disturbance in a thin boundary layer around the edge 

of the spherical spot for the example source functions in (25).  The O() magnitude of the 

thermodynamic variables perturbation is compatible with an O() edge Mach number defined by 

(26) and (27b), valid when 
1/2(1/ ).O    Equation (27) can be used in (1)-(4) and (11) to find 

linear acoustic equations valid in the limit   0, 

0 0 0 0

1
0     ,     R U U p

  
       (28a,b) 

0 0 0 0 0     ,     p R p T R     (29a,b) 

Equations (28) and (29) can be combined to find a simple wave equation for the radial velocity 

component U0r 

2
20

02

r
r

U
U




 


  (30) 
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subject to initial conditions, 

0
00     ,     0     ,     1r

r

U
U r

r



   


  (31) 

and the boundary condition from (26).  The solution can be written in the compact form [23] 

 
0      ,     1rU r

r

 
       (32a) 

     0     ,            1    (32b) 

where  is the function on the right side of (26) with  replaced by 1 – .  The acoustic velocity 

disturbance described by (32), and the associated thermodynamic variations found from (28a) 

and (29) are smooth functions with benign front properties but are valid only for 
1/2(1/ ).O    

The limitation arises because the boundary condition in (26) defines an accelerating “piston” 

speed that eventually exceeds the small Mach number condition implicit in the derivation of (28) 

and (29).  U0r and its first spatial derivative are zero at the front  = 1.  The discontinuity with 

respect to the undisturbed value for  > 1 is in the second spatial derivative.  These function 

characteristics arise from the properties of the time-resolved source in (25c).  One may note from 

(26) that the effective “piston speed” associated with the expanding hot gas is O(3
) for 1.   

This relatively gentle startup process should be compared with typical instantaneous acceleration 

problems, which display solutions with discontinuous functions at the front [22].  In contrast, the 

edge speed increases like O(2
) for large time values, implying that successively stronger 

disturbances will appear in the far-field as time evolves.  It is noted from (27c) that the acoustic 

temperature change is O() implying that the chemical reaction is suppressed in the external 

environment for  = O(1). 
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 Finally, it is noted that more general acoustic results can be obtained by using the edge 

speed in (24) as the “piston-like” source of disturbances.  The acoustic characteristics will 

depend on the spatial and time dependence of the model source function in (20a). 

2.4 Transport Effects near r = 1. 

 The rising temperature in the heated region caused by the source defined in (12) will, in 

general, lead to a finite temperature gradient near the edge of the spot and conduction into the 

cold environment.  An assessment of the conduction process on the heating time scale 

  1Ht O   can be obtained by transforming the energy equation (3) with scaled variables that 

describe small temperature variations from the edge value T = 1 in a thin boundary layer in the 

vicinity of rs(,).  A balance of energy accumulation, the absorbed heat and the conduction term 

can be used to show that T – 1 = O(1/2
) and r – rs(,) = O(1/2

).  Given the definition of  and  

in (9a,b), it follows that 1/2
 can be less than .  In the asymptotic limit, the conduction boundary 

layer is much thinner than the acoustic layer defined in (27a) and the local temperature variation 

O(1/2
) is minute relative to the O() acoustic temperature disturbance.  Finally, the ratio of the 

characteristic heat loss rate at the surface of the spot to the volumetric power absorption is O(), 

which is negligible in the limit   0. 

2.5 Asymptotic Solution Properties:    

 A study of the solution properties for    from (17)-(19) provides an opportunity to 

describe how the rising spot temperature can initiate a high activation energy reaction associated 

with the kinetics term /AT Te  where  
0

lim .AT





  When the exponential term is O(1), or T = 

O(TA), one can anticipate a strong exothermic reaction. 
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 Asymptotic behavior of the temperature, pressure, speed and density can be obtained easily 

for the generalized deposition heat source 

   , ,eQ f r g     (33a) 

where 

   , , 0     ,     ,sf r r r       (33b) 

   , , 0     ,     ,sf r r r       (33c) 

and g() has the properties defined in (20e) and (20f).
3
  Equations (17)-(19) can be evaluated to 

show that 

0 0lim ~      ,     lim ~T p
 

 
 

  (34a,b) 

2 3

0 0lim ~      ,     lim ~U R
 

 
 

  (34c,d) 

In addition, the local Mach number 

0 3/2

1/2

0

~
u U

M
a T





 


  (35) 

The high activation energy reaction is initiated when T0 ~  = O(TA).  Then (14), (34), and (35) 

imply that 

     2     ,          ,     A A AT O T p O T u O T    (36a,b,c) 

   2 2 3/21      ,     A AO T M O T       (36d,e) 

where (1).AT O   The dependence of the local Mach number, Me, on both  and TA can be used 

to discriminate between two kinds of evolutionary reactive gas-dynamic processes on an 

extended time scale: 

                                                           
3
 Other forms of time-dependence can be evaluated. 
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(a)  incompressible limit:  2/31     ,     1 AM T O    (37a,b) 

       2/3 1/3   ,      ,   1 1p T O u O o       (37c,d,e) 

(b) compressible limit:     2/31      ,     AM O T O     (38a,b) 

       2/3 1/3   ,      ,   1 1p T O u O O         (38c,d,e) 

Equations (37b) and (38b) provide explicit limitations on TA for a prescribed , or vice versa. The 

incompressible case, characterized by a small local Mach number (37a) and small density 

variation (37e), can be expected to retain the near inertial confinement properties found for the 

initial heating period  = O(1).  In contrast, the compressible limit properties in (38) imply a 

more significant transient gas dynamic process, including the conversion of significant amounts 

of thermal energy to kinetic energy. 

 A physical explanation for the failure of inertial confinement when TA = O( -2/3
) can be 

obtained by considering the ratio of the dimensional extended heating time ,He H At t T   derived 

from  = O(TA), to the dimensional local acoustic time  1/2/ / / ,Ae A A At R a t T O t T        

3/2He
A

A

t
T

t






  (39) 

Inertial confinement can prevail only when the ratio is small, corresponding to case (a).  When 

TA = O( -2/3
), the ratio is O(1), implying that acoustic wave can traverse the spot on a time scale 

comparable to that for extended heating. 

 The scaling contained in (36)-(38) can now be employed to define rescaled variables and 

new limiting equations for the reactive initiation portion of the process. 
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3.  Reaction Evolution:  A Ht O T t   

3.1  Incompressible Limit 

The temporal nonuniformities of the inert heating period solutions in (34)-(36) imply that the 

rescaled variables for the reactive incompressible limit are; 

 2/3     ,     1A AT T O      (40a,b) 

   ,  ,  A Ap T T p T T   (40c,d) 

2 31 AT R     (40e) 

2

Au T u   (40f) 

 These variables describe an extended period of thermal energy deposition from a 

combination of external source and exothermic chemical heat release.  The definition of 
eQ  

below (5)-(10) implies that the characteristic dimensional power deposition during the inert 

period  = O(1) is given by      2

0 0e e H H HQ O H t O a t O e t           where definitions below 

(5)-(10) have been used.  It follows that energy deposition during that period  Ht O t   is 

simply  0 .e HQ t O e     In contrast, energy deposition on the extended time scale  A Ht O T t   is 

   0 .e H A A v AQ t T O e T O C T        The inequality in (40b) implies that 2/3

0 .AT T     It follows that 

characteristic energy deposition for the incompressible limit is restricted to 

   2/3 2/3

0 0 .e H A vQ t T O C T O e       In other words, the nearly inertially confined heating 

process will occur only if the energy added during the extended heating period is sufficiently 

small.  This class of limitation, identical to that found in Ref. [2] for inert gas thermomechanics 

must be a universal characteristic of rapid localized heat addition to a variable density fluid.  The 
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extreme case of energy addition corresponding to TA = O(1/2/3
) is associated with a fully 

compressible, high internal Mach number flow.  Details are given in Section 3.2.   

 The temperature and pressure changes are large, while the density variation is small.  

Examination of (40f) shows that the nondimensional speed, based on oa  (see (5b)), can take on a 

wide range of values.  In particular, at the edge of the spot   ,oT T   the edge Mach number 

  1/2 1/2

0 1    ,   1         ,    e Au a O T        (41a) 

     1/2 1/2

0 1     ,            ,     e Au a O T O O          (41b) 

  1/2 2/3 2/3

0 1    ,      ,   e Au a O T         (41c) 

where | |e eu u   and the third inequality in each of (41) follows from the time transformation in 

(40a).  The subsonic edge Mach number in (41a) is compatible with the linear acoustic solution 

in (32a), due to the specified time extent 
1/2.  

  

 Accordingly, the character of the gasdynamics in the cold external environment, driven by 

gas expansion at the edge will differ considerably, depending on the particular value of TA.  In 

contrast, the local Mach number inside the spot  3/2 1.e AM u a u T O T      

 Equation (40) can be substituted into (1)-(4) to derive the describing equations for the 

extended heating period  = O(TA). 

  0R u     (42a) 

  2 3 1 n

A A

p
u T u u T V  




       (42b) 

 
 

 
2 3 2 3 1 2 31

1 1 Pr

n

A A e A A

C
T T u T T p u H Q T T


      

 


 

          
  

 (42c) 
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2 3 1/T m

A A A

D
Y T u Y T Ye T

Sc



 



       (42d) 

1/T

eQ Q Ye    (42e) 

 2 31 Ap T R T    (42f) 

where power law dependence for viscosity, conductivity and diffusion coefficient, respectively, 

defined by  = T
n
, k = T

n
 and D = T

m
/p, where n < 1 and m < 1, are assumed for the 

nondimensional transport equations to provide a model that includes high temperature transport 

effects. 

 Eq. (42) reduces to a relatively elementary system in the limit   0 because all of the 

transport term parameters are vanishingly small (see the definition of  in (9b), and Table 1 for 

characteristic values of ,vt  while 50AT   is typical). 

0
0 0 00     ,     

p
R u u

  


      (43a,b) 

 
 01/

0 0

1
     ,     , , ,

1

T

e e e eT H Q Y e Q Q r


   


    
 

 (43c,d) 

01/

0 0 0 0     ,     
T

AY T Y e p T


 
     (43e,f) 

where  and  are defined in (10a) and (9c), respectively, and 
eQ  represents the effect of 

continued external thermal power deposition.  It is assumed that the heat of reaction Hch = 

O(TA) in order to assure that the temperature increase due to exothermicity  is of the same 

magnitude as that due to external source effects on the time scale (1).O    In addition, it is 

assumed that  = O(1/TA) to assure O(1) reactant consumption on the time scale (1).O    Both 

assumptions are physically viable. Equation (43) describes an extended period of nearly-

inertially confined thermal power deposition, including a small change in density in an internally 
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low Mach number expansion process.  Equations (43c) and (43e) can be combined to define a 

Schwab-Zeldovich variable [24] used to find 
0 0 0( );Y Y T  

 
 * 0

0

0

1      ,     1
1

e ch
e ch

ch ch A

H T H
Y Q d H O

H H T




 

 
     

    (44) 

Equation (44) can be used to find the maximum temperature 
0 ( )T     associated with complete 

reactant consumption Y0 = 0 

     0

0

1 , , ,ch
e e

A

H
T H Q r d

T
      

 
     

 
  (45) 

where the first term on the right-hand side represents the adiabatic temperature rise from constant 

volume complete reactant consumption and the second term is the total temperature rise 

associated with the sustained external source energy deposition. 

An equation for
oT  is found by combining (43c), (44) and (45) 

      01/ *

0 0 01 1
Te

e e e e

ch

H
T H Q e T T H Q d

H



    



 

          
  

  (46) 

The initial condition on 
0T  is found formally by using the matching expression from (40d) 

0( 0) ( )/ 0,AT T T      meaning that looking back in time to the period  = O(1), the 

temperature is asymptotically small compared to that when (1).O    Equation (46) can be 

integrated numerically to find 
0( , , , )T r     for a specified external heat source .eQ   Reactant 

consumption is defined by (44).  The locally high pressure, defined by (43f), can be used in (43b) 

to find the local thermomechanically induced fluid motion.  Finally the density distribution is 

found by integrating (43a).  The equation system bears a striking resemblance to that discussed 

in Ref. [2] in the context of the response of an inert gas to extremely rapid transient, spatially 

resolved energy addition. 
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 The systematically derived reduced equations (43-46) provide a formal validation for the 

Zeldovich [19] detonation initiation model based on constant volume thermal explosion 

evolution.  The current analysis provides specific parametric conditions for which the model is 

valid and those for which it is not (see Section  ?   ).  Related concepts have been developed 

earlier by Jackson et al. [9] and Short [10, 11]. 

 Once 
0T  and Y0 are found from (46) and (44), respectively, 43b and f can be used to find the 

thermomechanically-induced velocity 

*0
0

0

T
u d







    (47) 

Finally, the small density distribution represented by 
0R  in the context of (51e) is found from 

*

0 0

0

R u d



     (48) 

A numerical solution to (46) for 
0 ( , )T r  with the initial condition 

0 ( ,0) 0T r   has been found for 

the axisymmetric source    1 cos /2 ,eQ r   (0 < r  1) when 0 1,   and 0eQ  when 

1   for a few values of the parameters He and  with Hch= 1 (see (44)).  Beyond the edge of 

the spot located at r = 1, 0.Q   The radial dependence of the scaled temperature 
0T  is given in 

Fig. 1 for several values of the scaled time when He = 5 and  = 10.  At each value of r, the 

temperature varies from 0 to a maximum value obtained from (45).   Source heating causes the 

temperature to rise in 0 ≤ r ≤ 1 for 0.1.   Thereafter, localized chemical heat release causes a 

relatively rapid temperature increase in the hottest portion of the spot.  By the time 1   when 

the source is turned off, approximately 85% of the spot has reached the maximum temperature 

value. A substantial radial temperature gradient appears in the vicinity of the r = 0.9 and 

becomes steeper as time increases. Fig. 2 shows the evolution of the gradient near the edge of the  
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Fig. 1. Temperature Profiles: H = 5.  = 10 

Fig. 2. Temperature Profiles: H = 5.  = 10 
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spot for much larger times. The temperature distribution is evolving to a discontinuous function 

near the edge, r  1.  This essentially constant volume process is characterized by 
0 0 ,p T so 

that the high temperature gas region is also at a locally large pressure.  Equation 47 implies that 

the large gradient region is a source of localized fluid acceleration. 

The narrow spatial region denoted by the large gradient separates hot burned gas on the left 

from cold unburned material on the right.  Results for the spatial distribution of reactant Y, 

shown in Fig. 3, can be interpreted in terms of a reaction front propagating through the spot.  If 

one examines the change in the location of the Y = 0.5 value with time during the period 

0.3 1  and converts the results to dimensional values (e.g, using (6a,b), (40a,d)) it can be 

shown that the front propagation speed, relative to the local (hot) speed of sound, ,a is  

/ / 0(1)F F AV a V T T   
 
with respect to the limit   0.  Results in Fig. 2 for large values of time 

shows that the front speed decelerates drastically as it moves into the colder gas ahead where the 

local “explosion” time is much longer than that in the hotter gas region.  Near r = 1
–
, the 

temperature distribution is essentially frozen for 1   because the source is extinguished and the 

gas is too cold to produce any significant amount of thermal energy.  The local finite gradient 

implies that fluid expelled from the hot spot edge (e.g, (47)) will be a continuing source of 

acoustic or stronger disturbances (e.g, see (41)) in the external cold gas with consequences 

similar to these described in [22]. 
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Temperature results for the parameter values He = 1 and  = 50 are given in Fig. 4.  In this 

case the reaction process is initiated more slowly because the source strength is reduced by a 

factor five.  However the reactive phase is stimulated by a much larger value of . The 

thermomechanically induced radial fluid velocity, shown in Fig.  5 for a limited range of the time 

variable, is caused by the large local gradient in temperature and pressure as defined by (43b) 

and (47).  Larger time values are displayed in Fig. 6.  These results show rather substantial 

growth in the maxium speed values, nondimensionalized with respect to the cold speed of sound, 

0.a  The maximum values listed in the inset in Fig. 6 are quite large.   These results should be 

interpreted with the knowledge that the local Mach number, with reference to the hot speed of 

sound is very small, as noted below (41c). 

 

Fig. 3. Concentration Profiles: H = 5.  = 10 
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Fig. 4. Temperature Profiles: H = 1.  = 50 

Fig. 5.  Velocity Profiles: H = 1.  = 50 
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It may be tempting to associate the pressure, temperature and reactant concentration jumps 

observed in the figures with a reactive shock.  However, on the reactive heating time-scale of 

interest (40a) the physical process is occurring in a primarily incompressible fluid and the front 

is observed to stagnate.  In fact, an ephemeral hot, high pressure, low speed, burned out spot has 

been generated by a momentary inertial confinement process during the extended chemical 

heating time.  The huge pressure gradient across the front will be the source of a localized 

relaxation process, characterized by hot spot gas expansion on the longer acoustic time scale of 

the spot.  The front will be driven into the surrounding unburned reactant leading to the 

appearance of new localized combustion waves.  Elucidation of this relaxation process is the 

subject of a current investigation. 

The nondimensional results in Figs. 1-6 can be interpreted in terms of a dimensional 

example based on the following data. 

Fig. 6. Velocity Profiles: H = 1.  = 50 
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3 6

0 0 010 m   ,   300K   ,   1 atm   ,   340 m/s   ,   2.9 10 s     ,AR T p a t            

710 s   ,   .034     ,Ht     

5 1/2(10 J/kg)   ,   1/ 5.42     ,e AH O T      

where the TA value is midrange in (40).  The characteristic high temperature 0AT T   is about 1600K 

and the corresponding high pressure 0AT p  about 5.5 atm (see (40)).  The small density change is 

O(1/2
) and the local Mach number is O(1/4

). 

3.1.1  Linear Acoustic Wave Evolution: (1)t O  

Acoustic disturbances of O() amplitude described in Section 2.3 by (27) propagate at a 

characteristic dimensional speed 0a  during the interval ( ).Ht O t   The characteristic distance 

traveled is ( ),O R   small compared to the hot spot dimension .R   During the extended heating 

time period, defined by (40a), the wave front moves a greater distance characterized by 

( ).AO T R    Meanwhile, larger linear acoustic disturbances are generated by the small edge Mach 

number defined in (41a) during the time period characterized by (1).O    The variable 

transformations 

       2 2ˆˆˆ ˆ1  , 1  , 1 , ,    ,   A Ap T T p T u T u         (49a,b,c,d) 

     ,     1A AT r T        (50a,b) 

and the limit   0 can be employed in (1)-(4) to derive linear acoustic equations describing 

larger acoustic disturbances 

ˆ ˆ 0u     (51a) 

ˆ
ˆ

p
u




    (51b) 
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 

ˆ
ˆ

1

T
u


 


  (51c) 

 ˆˆp̂ t O      (51d) 

where the differential operators are written in spherically symmetric form . 

 These equations are subject to initial conditions associated with the much weaker wave 

disturbances generated during the earlier period,  = O(1), so that the initial value of all variables 

ˆˆˆ ˆ( , , , )p T u is zero.  In contrast, the fluid expelled from the hot spot boundary observed in Figs. 5 

and 6 provide the boundary condition that drives the disturbances.  In conclusion, there will be a 

sequence of acoustic disturbances of increasing amplitude propagating through the unbound gas 

beyond the hot spot.  Further solution development for the acoustic problem is anticipated. 

3.2  Compressible Limit 

The rescaled variables appropriate in the compressible limit are also implied by the temporal 

nonuniformities in (34)-(36) when 3/2 (1).AT O   

2/3

1
ˆ     ,     A AT T O 



 
   

 
  (49a,b) 

   ˆˆ, ,Ap T T p T   (49c) 

ˆ    (49d) 

 2 1/2ˆ
A Au T u O T    (49e) 

It follows that the conservation of mass, momentum, energy and species, as well as the state 

equation in (1)-(4) can be written as 

ˆ
ˆ ˆû    (50) 
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  (1 )

ˆ

ˆ ˆˆ ˆ ˆ ˆ n

A

p
u u u T V 




       (51) 

 
 

 
(1 )

ˆ

ˆˆ ˆ ˆ ˆˆˆ ˆ ˆ
1 1 Pr

n

e A

C
T u T p u H Q T

 
   

 


 

             
 (52) 

 ˆ1/

ˆ
ˆ ˆˆ T m

A AY u Y T Ye T D Sc          (53) 

ˆˆp̂ T   (54) 

  1/ˆ, , , Tch
e

e

H
Q Q r Ye

H


   

 


  (55) 

where the transport properties are identical to those below (42) and   = O(1/TA), (1).ch

e

H
O

H






  

The internal Mach number, 

 
2

3/2

1/2

ˆ
(1)

ˆ

A

A

A

u u T u
M O T O

a T T T





    


  (56) 

Equations (50)-(55) describe a fully compressible, reactive flow with primarily small 

transport effects except where velocity, temperature, and concentration gradients are 

exceptionally large.  The internal Mach number is substantial and can be supersonic.  The 

internal dynamics of the reactive hot spot must be determined by a numerical solution of (50)-

(55).  The consequences of those dynamics will determine the gasdynamic disturbances in the 

far-field.  Kassoy [2] has shown that the inert analogue of (50)-(55) is compatible with a strong 

blast wave in the unheated external environment.  In fact, it can be demonstrated, using the 

results in [2] that the blast wave is actually initiated within the inert near-field volume, far from 

the origin and at a large value of the relevant time scale.  One can expect similar properties for 

the near-field gas dynamics in a reactive hot spot.  Numerical solutions are required to 

understand the details and will be the subject of a future communication.  
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4. Context, Summary and Conclusions 

4.1  Context 

Transient, spatially distributed combustion in a turbulent flow is thought to be the source of 

acoustic and stronger mechanical disturbances in a LRE chamber. Surprisingly, a quantitative 

model for mechanical wave generation in a transient, spatially distributed reacting flow does not 

appear to be available in the technical literature. Kassoy’s thermomechanics-based formulation 

[2] for related processes in an inert gas identifies a quantitative relationship between time 

resolved, localized power deposition into a finite volume of gas and the magnitude of acoustic or 

stronger disturbances generated in the neighboring unheated, unconfined gas.  The results 

demonstrate that the thermomechanical response of the heated gas depends on a complex 

relationship between the magnitude of energy deposited and the time scale for that deposition, 

but not simply on the power deposition alone. The theory is limited to heating time scales small 

compared to the acoustic time of the volume, a condition necessary for the pressure to rise with 

temperature (while the density change is marginal). When the energy deposition is quantitatively 

limited, nearly constant volume heating occurs (near-inertial confinement), characterized by a 

small internal gas expansion Mach number defined with respect to the high temperature hot spot 

speed of sound.  Temperature and pressure rise together within the hot spot. Localized high 

pressure, relative to that in the cold neighboring gas, is necessary to create the pressure gradient 

source of induced mechanical motion (both fluid speed and acoustic disturbances).  Gas expelled 

from the boundary of the hot spot (the “piston effect”) is the source of mechanical disturbances 

in the unheated environmental gas.  The expelled gas Mach number, defined with respect to the 

cold gas speed of sound will be exceptionally small when the energy deposition is sufficiently 

small relative to the quantitative limitation referred to above.  The resulting mechanical 
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disturbances in the cold environment are linear acoustic waves.  Larger energy deposition within 

the quantitative limitation is associated with much larger expelled gas Mach numbers and 

significantly stronger shock wave propagation in the cold environmental gas. Beyond the 

quantitative limitation referred to above, the heating process is fully compressible, characterized 

by a very large internal Mach number. The asymptotic theory demonstrates that this type of 

thermomechanical response to energy deposition is the source of strong blast waves [23] in the 

unheated external environment. 

4.2  Summary and Conclusions 

The theoretical framework in Ref. 2 has been used in the present work to quantify the 

thermomechanical response of a reactive gas affected by a localized exothermic chemical 

reaction. The extension is formulated for a subcritical perfect gas with one-step, high activation 

energy exothermic kinetics. The asymptotic formulation demonstrates that the thermomechanical 

response of a reactive gas to localized, rapid
4
 chemical heat addition is similar in nature to that 

for an inert gas with external heating.  Nearly inertially-confined heating occurs only when the 

chemical heat release and the high activation energy are quantitatively restricted.  Within that 

limitation one finds linear acoustic wave generation for the smallest range of energy addition and 

stronger wave generation for more significant energy deposition.  

Numerical solutions to the equations describing the nearly-inertially confined reaction-

generated heat addition process show that a spatially distributed reaction wave appears 

spontaneously in the hottest portion of the hot spot, and propagates through the relatively slowly 

moving fluid at a supersonic speed, relative to the hot gas speed of sound. As the front nears the 

much colder boundary of the hot spot it decelerates significantly and steepens considerably.  The 

configuration evolves toward a discontinuous front separating hot, high-pressure, burned gas on 

                                                           
4
 Heating time-scale short compared to the local acoustic time. 
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one side from cold, low pressure reactant on the other side.  Although the pressure, temperature 

and reactant concentration jumps across the front are reminiscent of a reactive shock wave, the 

front does not propagate at a supersonic speed relative to the unburned cold reactant near the 

boundary of the hot spot.  In fact, during the relevant heating time scale the entire process occurs 

in a nearly incompressible medium. The heating process on the time scale of interest has created 

an ephemeral, isolated, burned out, hot, high pressure spot embedded in a cold unreacted, lower 

pressure gas.  The large pressure gradient at the front induces a local positive radial fluid 

velocity. Fluid expelled from the hot spot boundary acts as source of mechanical disturbances 

propagating into the neighboring cold gas.  The amplitude of those disturbances depends upon 

the energy addition level during the reactive phase of the hot spot.  Of course there must be a 

subsequent longer time-scale process in which the pressure differential is relaxed. One can 

anticipate that a combustion wave will be driven into the neighboring reactant.  

This type of asymptotic formulation and analysis can provide fundamental insights into the 

sources of mechanical disturbances within a LRE chamber containing a turbulent reacting flow, 

consisting of spatially distributed regions of transient combustion.  In addition the results define 

crucial length and time scales, as well as dominant physico-chemical mechanisms.  These 

outcomes can inform the numerical modeler seeking to develop code capable of resolving 

transient, compressible, reactive turbulent flows. 

Acknowledgment:  This research has been supported by a Phase I STTR contract FA9550-10-

C-0088 sponsored by the Air Force Research Laboratory (AFRL).  The author appreciates the 

support of the Program Manager, Dr. Mitat Birkan, of AFOSR. 

  



37 
 

Bibliography 

1. Oppenheim AK, Soloukhin RI (1973) Experiments in the gasdynamics of explosions. Annu 

Rev Fluid Mech 5:31-55 

2. Kassoy DR (2010) The response of a compressible gas to extremely rapid transient, 

spatially resolved energy addition: An asymptotic formulation. J Eng Math 68:249-262 

3. Kevorkian J, Cole JD (1981) Perturbation methods in applied mathematics. Applied 

Mathematical Sciences. 34, p.482, Springer-Verlag, New York 

4. Clarke JF, Kassoy DR, Riley N (1986) On the direct initiation of a plane detonation. Proc 

Roy Soc Lond A 408:129-148 

5. Clarke J.F, Kassoy DR, Maharzi NE, Riley N, Vasantha R (1990) On the evolution of 

plane detonations. Proc Roy Soc Lond A 429:259-283 

6. Mazaheri K (1997) Mechanism of the onset of detonation in direction initiation.  

Department of Mechanical Engineering, McGill University, Canada 

7. Eckett CA, Quirk JJ, Shepherd JE (1997) An analytical model for direct initiation of 

gaseous detonation waves, in 21st International Symposium on Shock Waves, 2100  

8. Eckett CA, Quirk JJ, Shepherd JE (2000) The role of unsteadiness in direct initiation of 

gaseous detonations.  J Fluid Mech 421:147-183 

9. Jackson TL, Kapila AK, Stewart DS (1989) Evolution of a reaction center in an explosive 

material. SIAM J App Math 49:452-458 

10. Short M (1995) The initiation of detonation from general non-uniformly distributed initial 

conditions. Phil Trans R Soc Lond A 353:173-203 

11. Short M (1997) On the critical conditions for the initiation of a detonation in nonuniformly 

perturbed reactive fluid. SIAM J Appl Math 57:1242-1280 



38 
 

12. Sileem A, Kassoy DR, Hayashi AK (1991) Thermally initiated detonation through 

deflagration to detonation transition.  Proc Roy Soc Lond A 435:459-482  

13. Kassoy DR, Kuehn JA, Nabity MW, Clarke JF (2008) Detonation initiation on the 

microsecond time scale: DDTs. Combust Theory and Model 12:1009-1047 

14. Kassoy DR, Kuehn JA, Nabity MW, Clarke JF (2005) Modeling detonation initiation on 

the microsecond time scale. AIAA 2005-1169 43rd Aerospace Science Meeting and 

Exhibit, Jan 10-13, 2005, Reno, NV, 2005-1169  

15. Regele JD, Kassoy DR, Vasilyev OV (2011) submitted, Comb. Modeling and Theory 

16. Gu XJ, Emerson DR, Bradley D (2003) Modes of reaction front propagation from hot 

spots. Comb Flame 133:63-74.  

17. Oran ES, Gamezo VN (2007) Origins of the deflagration-to-detonation transition in gas-

phase combustion. Combustion and Flame 148:4-47. 

18. Oppenheim AK (2006) Dynamics of combustion systems. Springer, New York  

19. Zeldovich YB (1980) Regime classification of an exothermic reaction with nonuniform 

initial conditions. Comb Flame 39:211-214 

20. Zeldovich Y, Librovich G, Makhviladze G, Sivashinsky G (1970) Development of 

detonation in a non-uniformly preheated gas. Astronautica Acta 15:313-321 

21. Kapila AK, Schwendeman DW, Quirk JJ, Hawa T (2002) Mechanism of detonation 

formation due to a temperature gradient. Comb Theory Modeling 6:533-594  

22. Clarke JF, Kassoy DR, Riley N (1984) Shocks generated in a confined gas due to rapid 

heat addition at the boundary. II. Strong shock waves. Proc Roy Soc Lond A 393:331-351 

23. Whitham GB (1974) Linear and nonlinear waves. Wiley Interscience, New York 

 


